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ABSTRACT

In recent years, computer vision and graphics fields have witnessed significant progress with

the emergence of novel techniques and architectures to address complex challenges. This thesis

presents novel methodologies and advancements to enhance the accuracy and robustness of current

methodologies in scene understanding. The study focuses on developing algorithms for 2D trans-

parent object segmentation in challenging indoor environments, aiming to significantly improve

detection capabilities in scenarios with cluttered backgrounds and variable lighting conditions.

Additionally, it explores 3D test time augmentation methods for classification and segmentation,

targeting both static and dynamic objects in indoor and outdoor scenes to enhance model resilience

and accuracy. By implementing these methods, the research aims to provide robust solutions that

adapt to variations in data, thereby improving the overall performance of 3D models.

Furthermore, the research combines 3D reconstruction with motion flow estimation to achieve a

comprehensive understanding of dynamic objects, such as humans and animals, in indoor settings.

This approach aims to accurately track and predict object movements, enhancing the analysis of

dynamic scenes.

The study also utilizes text-to-image diffusion models for 2D open vocabulary camouflage

instance segmentation, addressing the detection and segmentation of camouflaged objects in outdoor
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and underwater environments. This method leverages advanced diffusion models to identify and

segment camouflaged instances from diverse vocabularies, improving the detection and analysis of

such objects in challenging settings.

Lastly, the creation of a comprehensive dataset for camouflaged animals in videos aims to

improve classification, detection, and segmentation algorithms. This dataset includes outdoor and

underwater videos of camouflaged animals, facilitating the development of robust algorithms capable

of accurately analyzing these animals in their natural habitats. This effort contributes to wildlife

conservation and environmental monitoring by providing a valuable resource for further research.

In summary, this research pushes the boundaries of scene understanding by offering more

accurate and robust solutions for interpreting complex scenes. By addressing specific challenges

associated with different environments and object types, it aims to significantly advance the field of

computer vision.
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CHAPTER 1

INTRODUCTION

Understanding complex scenes has dramatically improved with progress in computer vision and

3D scene interpretation in recent years. However, scene understanding is still a challenging task,

especially in complex scenarios. This exploration of scene understanding covers several critical

dimensions, each with unique challenges that push current methodologies to their limits. These

advancements aim to address the limitations of current scene understanding techniques and provide

more accurate and robust results.

This research addresses several crucial areas in the field of scene understanding, focusing on

specific tasks and environments to enhance the accuracy and robustness of current methodologies as

shown in Figure 1.1. These topics include:

Figure 1.1: Research overview of this thesis.
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• 3D Test Time Augmentation Method for Classification and Segmentation: Enhancing

3D scene understanding involves robust classification and segmentation techniques that can

adapt to both static and dynamic environments. This topic covers indoor scenes with static

real and synthetic objects, as well as outdoor scenes with dynamic objects and changing

backgrounds. By implementing test time augmentation methods, the research aims to improve

the performance of 3D models, making them more resilient to variations in the data and

enabling more accurate scene interpretation.

• 4D Joint Reconstruction and Flow Estimation for Dynamic Objects: Understanding

dynamic objects, such as humans and animals, in 4D (spatial and temporal dimensions) is

crucial for applications that involve motion analysis and interaction. This research focuses on

joint reconstruction and flow estimation in indoor environments with dynamic objects. By

combining 3D reconstruction techniques with motion flow estimation, the aim is to achieve a

comprehensive understanding of dynamic scenes, allowing for more accurate tracking and

prediction of object movements.

• 2D Transparent Object Segmentation: Transparent object segmentation remains one of

the most challenging tasks in computer vision due to the nature of transparent materials that

lack color and texture. This research focuses on indoor environments with difficult scenarios,

such as cluttered backgrounds and varying lighting conditions. By developing advanced

segmentation algorithms, the goal is to improve the detection and understanding of transparent

objects in 2D images, enhancing the ability to interact with and manipulate these objects in

practical applications.

• 2D Open Vocabulary Camouflage Instance Segmentation Using Text-to-Image Diffusion

Models: Camouflaged object detection is a significant challenge in outdoor and underwater

environments due to the objects’ ability to blend seamlessly with their surroundings. This

research explores the use of text-to-image diffusion models to perform open vocabulary

instance segmentation of camouflaged objects, including animals and some humans. By lever-

aging advanced diffusion models, the goal is to develop a system that can accurately identify

and segment camouflaged instances from diverse vocabularies, improving the detection and

analysis of such objects in challenging environments.

• Video Camouflaged Animal Understanding Dataset: The creation of a specialized dataset
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for camouflaged animal understanding in videos is essential for advancing the field of video

analysis and scene understanding. This dataset will include outdoor and underwater videos of

camouflaged animals, focusing on tasks such as classification, detection, and segmentation.

By providing a comprehensive dataset, the research aims to facilitate the development of

more robust algorithms capable of accurately analyzing camouflaged animals in their natural

habitats, contributing to wildlife conservation and environmental monitoring efforts.

Each of these topics represents a frontier in scene understanding research, addressing specific

challenges associated with different environments and object types as shown in Table 1.1. By

advancing methodologies in these areas, this research aims to push the boundaries of what is

possible in computer vision, providing more accurate and reliable tools for interpreting complex

scenes. Firstly, we work on 3D classification and segmentation, but we found that human is dynamic,

deformable, which is challenging. So, we study human and animal shape and motion. Next,

we observed that human can interact well with special objects like transparent, mirror, but robot

or perception system mostly failed. Therefore, we work on 2D transparent and reflective object

segmentation. After successfully work with transparent objects, we realize that transparent is one of

the camouflage techniques. So, we move to recognize and segment camouflage objects (including

animals and human). Lastly, instead of focus on visual appearance of camouflaged object, we

actually can base on their motion (need multiple frames or video). However, there is only some

small-scale datasets for video camouflage understanding. Therefore, we propose our video dataset

to fill the gap. The remainder of this thesis is organized as follows:

Chapter 2 of this thesis investigates data augmentation, a powerful technique extensively used in

2D deep learning but relatively overlooked in 3D deep learning. Sparse representation and low point

density of 3D shapes pose significant challenges, leading to diminished performance in downstream

tasks. To address this, we explore the potential of test-time augmentation (TTA) for 3D point

clouds. Drawing inspiration from recent advances in learning implicit representations and point

cloud upsampling, this chapter proposes a systematic approach to augment point cloud data. By

leveraging implicit field reconstruction and point cloud upsampling techniques, test-time augmented

data is generated by sampling points from the reconstructed results. Extensive experiments on

the ModelNet40, ShapeNet, ScanObjectNN, S3DIS, and SemanticKITTI datasets reveal that both

test-time augmentation strategies improve accuracy. Notably, point cloud upsampling demonstrates

significant performance gains for object classification and segmentation tasks, particularly on sparse

3



Table 1.1: The tasks of scene understanding and its corresponding challenging scenarios.

Scene Understanding Challenging Scenarios

3D Classification and Segmentation Dynamic and Moving Objects

4D (3D + Time) Reconstruction Dynamic, Deformable Objects

2D Semantic Segmentation Transparent and Reflective Objects

2D Instance Segmentation Camouflage Human and Animals

3D / Video (2D + Time) Classification,
Camouflage Animals, Category Diversity

Detection, Segmentation

point clouds.

Chapter 3 delves into object reconstruction from 4D point clouds, a domain often overlooked

despite the impressive progress in 3D point cloud reconstruction. The novelty of this chapter lies in

the proposal of a novel network architecture called RFNet-4D++. This architecture simultaneously

reconstructs objects, and their motion flows from 4D point clouds, leveraging spatial and temporal

features to boost overall performance. A key element of RFNet-4D++ is the introduction of a

temporal vector field learning module that employs an unsupervised learning approach for flow

estimation combined with supervised learning of spatial structures for object reconstruction. The

presented experiments on benchmark datasets demonstrate the efficacy of RFNet-4D++, showcasing

state-of-the-art performance for flow estimation and object reconstruction, all while significantly

reducing training and inference times.

Chapter 4 shifts the focus towards the challenges in semantic scene understanding for transparent

objects in computer vision. Glass is a ubiquitous material in modern household and industrial

applications. Yet, scene-understanding tasks often treat it as an opaque entity. This chapter introduces

a pioneering approach for transparent object segmentation from a single color image using a

pyramidal transformer encoder-decoder architecture. Two novel object cues are presented to enhance

the segmentation process’s accuracy. First, the Boundary Feature Aware (BFA) module incorporates

a novel boundary loss to learn and integrate glass boundary features, enabling precise localization

and segmentation of glass-like regions. Second, the Reflection Region Aware (RRA) module

decomposes reflection into foreground and background layers, thereby providing the network with

additional features to distinguish between glass-like and non-glass areas. Thorough experimental
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evaluations on the Trans10K-v2 and Stanford2D3D datasets validate the effectiveness and efficiency

of the proposed method, showcasing its superiority over state-of-the-art techniques with a remarkable

+6.23% mIoU improvement on Trans10K-v2 dataset and +10.1% mIoU on Stanford2D3D dataset.

Chapter 5 leverages text-to-image diffusion techniques for open-vocabulary camouflaged instance

segmentation. The text-to-image diffusion techniques have shown exceptional capabilities of

producing high-quality, dense visual predictions from open-vocabulary text. This indicates a strong

correlation between visual and textual domains in open concepts and that diffusion-based text-image

discriminative models can capture richly diverse information for effective segmentation in the wild.

However, we found that those advantages are more difficult to hold true for camouflaged individuals

because of the significant blending between their visual boundaries and their surroundings. In this

work, while leveraging the benefits of diffusion-based text-to-image models for open-vocabulary

performance, we aim to address a challenging problem in computer vision: camouflaged instance

segmentation. Specifically, we propose a method built upon a state-of-the-art diffusion model

empowered by open-vocabulary to learn multi-scale textual-visual features for camouflaged object

representations. Such cross-domain representations are desirable in segmenting camouflaged objects

where visual cues are subtly to distinguish the objects from the background, especially in segmenting

novel objects not seen in training. We also develop technically supportive components to fuse cross-

domain features effectively and engage relevant features towards respective foreground objects. We

validate our method and compare it with existing ones on several benchmark datasets of camouflaged

instance segmentation and generic open-vocabulary instance segmentation. Experimental results

confirm the advances of our method over existing ones.

Chapter 6 introduce a new video camouflaged animal understanding dataset. We have been

witnessing remarkable success led by the power of neural networks driven by a significant scale

of training data in handling various computer vision tasks. However, less attention has been

paid to monitoring the camouflaged animals, the masters of hiding themselves in the background.

Performing robust and precise camouflaged animal segmentation is not trivial even for domain

experts because of their consistent appearance with backgrounds. Even though several efforts

were made to perform camouflaged animal image segmentation, there is only some work on

camouflaged animal video segmentation to the best of the author’s knowledge. Biologists usually

favor videos with redundant information and temporal consistencies to perform biological monitoring

and understanding of the behavior and events of animals. The scarcity of such labeled video data
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is the most hindering issue. To address these challenges, we present CamoVid60K, a diverse,

large-scale, and accurately annotated video dataset of camouflaged animals. This dataset comprises

218 videos with 62,774 finely annotated frames, covering 70 animal categories, which surpasses all

previous datasets in terms of the number of videos/frames and species included. CamoVid60K also

offers more diverse downstream tasks in CV, such as camouflaged animal classification, detection,

and task-specific segmentation (semantic, referring, motion), etc. We have benchmarked several state-

of-the-art algorithms on the proposed CamoVid60K dataset, and the experimental results provide

valuable insights into future research directions. Our dataset stands as a novel and challenging

testing set to stimulate more powerful camouflaged animal video segmentation algorithms, and there

is still a large room for further improvement.
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CHAPTER 2

ROBUST INFERENCE USING TEST TIME
AUGMENTATION

2.1 Introduction

Point-based representation is of great importance to computer graphics and computer vision. In

the modern era of deep learning, neural networks can be designed to learn features from point

clouds, facilitating 3D perception tasks such as object classification, object detection, and semantic

segmentation in many downstream applications. Nevertheless, such evolutions still leave 3D

perception a challenging and unsolved problem. A typical disadvantage of point-based representation

is that surface information is implied by point density and orientation, if any. Due to such ambiguity,

techniques for data augmentation on point clouds are relatively scarce and challenging to design.

Recent advances in using neural networks to represent 3D data have opened new opportunities

to revise and explore this problem from a new perspective [191, 212, 298]. One type of method

is the so-called neural implicit representation based on the idea of training a neural network that

can return queries of the 3D space from input coordinates [207, 191, 246, 212]. Particularly, one

can train a neural network to encode a 3D point to various attributes such as occupancy, color, or

a general feature vector. The power of a neural implicit representation is that the queries can be

performed at arbitrary points, and no special mechanism is required for value interpolation. Another

type of methods [329, 154, 298] employs upsampling to achieve both distribution uniformity and

proximity-to-surface. The advantages of the upsampling-based method lie in self-supervision and

more uniformly distributed dense representation without the need of surface ground truth.

In this work, we investigate both types of strategies and leverage them as a systematic way for

data augmentation at test time. Particularly, for implicit representation, we leverage the convolutional

occupancy network [212] to encode the 3D point clouds to a regular grid representation that allows

the interpolation of features at an arbitrary location. For the upsampling-based method, we employ

the self-upsampling method [298] to obtain a dense and uniformly distributed proximity-to-surface

point cloud. We propose an effective technique to aggregate features of the original and augmented
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point clouds to generate the final prediction. We select the task of object classification and semantic

segmentation as the downstream task to validate our augmentation technique, as they play a key role

in many practical applications, including perception in robotics and autonomous driving. We experi-

ment with point cloud data from ModelNet40 [303], ShapeNet [19], ScanObjectNN [275], S3DIS [4]

and SemanticKITTI [8] dataset, which demonstrates significant performance improvement.

In summary, our key contributions are:

• We analyze and compare existing reconstruction approaches, including surface-based sampling

and point cloud upsampling for test-time augmentation.

• We propose a test-time augmentation method for 3D point cloud deep learning, which is

suitable for both approaches;

• We identified a self-supervised point cloud upsampling method or surface-based sampling

as a robust method for our test-time augmentation. It uses the proximity-to-surface cues to

sample augmented point clouds.

• Extensive experiments and analysis prove the effectiveness of our augmentation method on

two downstream tasks, including object classification and semantic segmentation on synthetic

and real-world datasets.

2.2 Related Works

2.2.1 3D Deep Learning

Early methods usually convert the irregular and sparse 3D points into multiple regular 2D views [311,

120, 43] or 3D voxels [303, 295, 104, 42, 263]. Despite the improvements gained by performing

CNN on these regular structures, these methods usually suffer information loss and high computa-

tional costs.

Point cloud is a universal representation for 3D data. PointNet [217] is the pioneering work

that can process 3D points directly by symmetric functions and max-pooling to extract global

features. To capture local features, PointNet++ [219] performs hierarchical PointNets on different

scales. In recent years, various convolution operators and networks have been proposed for point

clouds, such as PointCNN [157], SpiderCNN [315], DGCNN [293], and ShellNet [341] with the

supreme performance achieved on classification, retrieval, and segmentation tasks. There are also

approaches [105, 287, 80, 101, 312] specially designed for semantic segmentation. Huang et al. [105]
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learn the local structure, particularly for semantic segmentation, by applying learning algorithms

from recurrent neural networks. SPG [144] constructs graphs between coarsely segmented super-

points for large-scale point cloud semantic segmentation.

To balance the efficiency and accuracy, hybrid works [145, 173, 334] utilize the characteristics of

multiple representations. PointGrid [145] assigns fix number of points in each grid cell, making the

conventional CNN feasible. While it runs fast, the accuracy is still not high. PVCNN [173] represents

the input in points and performs the convolutions in voxels with a superior performance achieved

than sole point or voxel representations. To handle large-scale lidar point clouds, FusionNet [334]

divides the input into voxels and extracts features from both voxels and inner points.

2.2.2 Neural 3D Reconstruction

3D reconstruction works can be classified into four categories in terms of the representation of the

output: voxel-based, point-based, mesh-based, and implicit function-based methods.

Similar to semantic segmentation, voxel is also a popular representation for 3D reconstruction [38,

299, 303]. In the category, voxel grids are used to store either occupancy that encodes whether the

voxel is occupied or not [303, 38] or SDF information that holds signed projective distances from

voxels to the closest surfaces [44, 158, 252]. However, as mentioned in the segmentation works,

such methods inherit the limitations of high memory costs.

Another line of works output point clouds directly for 3D reconstruction [69, 160, 215, 318].

These methods design generative models to produce dense points for scene representation. Despite

the efficiency, the generated points cannot sufficiently represent complicated surfaces as there is no

topology between the points.

Mesh is another popular output representation for 3D reconstruction. In this category, some

work deform shapes with simple topology to more complicated shapes, which usually constrain

to certain fixed templates [122, 225] or topologies [244, 9]. To reconstruct a shape of arbitrary

topology, AtlasNet [82] warps multiple 2D planes into 3D shapes. Despite the superior results, this

method can result in self-intersecting mesh faces.

To overcome the limitations of the above explicit representations (voxel, point, mesh), more

recent works focus on implicit representations that employ occupancy [191, 212] and distance

field [207, 17] with a neural network to infer an occupancy probability or distance value for the
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input 3D points. As implicit representation models shape continuously, more detail is preserved,

and more complicated shape topologies can be obtained. In this work, we also employ implicit

representation to aim to augment a point cloud for various downstream tasks.

2.2.3 Point Cloud Upsampling.

Point cloud upsampling can produce a dense, uniform, and complete point cloud from a sparse and

noisy complete with or without missing parts.

Traditional Point Cloud Upsampling. A seminal point cloud upsampling algorithm is to interpo-

late points as vertices of a Voronoi diagram [1]. [167] later proposed an algorithm by introducing the

locally optimal linear projector for surface reconstruction and using it to project a set of points onto

the input point cloud. This work was followed by [102], who proposed a weighted locally linear

operator in order to make the point cloud distribution more even. [103] introduces an edge-aware

resampling method by sampling points on the edge and calculating the normals at those points. All

of the above-mentioned methods are not data-driven and thus they heavily rely on priors such as

normal estimation.

Deep-Learning Based Point Cloud Upsampling. PU-Net [329] was the first deep learning-based

point cloud upsampling method that used a multi-branch feature expansion module to extract multi-

scale features and expand a point cloud in the feature space. This was followed by EC-Net [328],

which achieves edge-aware point cloud upsampling by learning distance features obtained by the

perturbation of the generated point cloud relative to the input point cloud. In this work, we propose

to use point cloud upsampling as a test-time augmentation technique.

2.2.4 Data Augmentation and Test-Time Augmentation

In modern deep learning, large-scale data is often required for training deep neural networks; how-

ever, acquiring a large amount of data is a thorough and prohibitively expensive process. Data

augmentation is a common but useful technique to scale up the data artificially. In image classifica-

tion, popular data augmentation includes simple transformations of the images, including rotations,

flipping, cropping, etc. [137, 100, 257, 243, 92, 100]. In 3D deep learning, traditional methods (e.g.,

PointNet [217] and PointNet++ [219]) utilize similarity transformations such as random rotations,

scaling, and jittering for data augmentation during training. Similarity transformations are also
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used to augment real-world data to build ScanObjectNN [275], a real-world dataset for object

classification. Research efforts for more sophisticated augmentation techniques for 3D point clouds

are relatively scarce. Recently, PointMixup [27] is proposed to mix two point clouds based on

shortest path linear interpolation; PointAugment [153] uses adversarial learning to seek augmented

point clouds satisfying a given classifier. PPBA [34] automates the design of augmentation policies

for the specific task of 3D object detection. Apart from train-time data augmentation, in this work,

we assume that pre-trained models for specific downstream tasks are already given and investigate

test-time augmentation techniques [6] that can boost overall performance.

Particularly, Test-time augmentation (TTA) first transforms the input, then perform predictions on

the augmented versions of the input, and finally combines the prediction results of both the input and

augmented version ones. This strategy is common to image classification with simple augmentation

policies such as flipping, cropping, and scaling [100]. More sophisticated methods involve learning

and optimizing augmentation policies [235, 130, 182, 240], or learning to combine predictions [240].

Beyond images, TTA has also been applied to medical image segmentation [197, 280] and text

recognition [152]. For point clouds, however, we are unaware of any recent method tailored to

test-time augmentation and augmentation policies.

2.3 Our Method

2.3.1 Overview

Given a point set {pi}
n
i=1 with pi ∈ R3 represented by a matrix x0 ∈ Rn×3. Without loss of

generality, we assume at inference, x0 is passed to pre-trained network f for feature extraction,

and the features are passed to a network g for final label prediction f(x0). Our goal is to achieve

performance improvement in the downstream task via test-time augmentation, where the final

prediction can be defined as:

g(ϕ(f(x0), f(x1), f(x2), ...)) (2.1)

where ϕ is an aggregation function to combine multiple features resulting from the original point set

x0 and the augmented point sets x1, x2, etc. Note that the network f and g are pre-trained and left

untouched in test-time augmentation; only the input is augmented.

Traditionally, a simple method for test-time augmentation is jittering, which adds Gaussian noise
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Figure 2.1: Illustration of our test-time augmentation method for point clouds downstream tasks
such as classification and segmentation. We view the input point cloud as a noisy estimate of a
latent surface and propose using an implicit field represented by an occupancy network or a point
cloud upsampling network to sample augmented point clouds so that the point clouds share the same
underlying surfaces. We then perform the downstream task on each point cloud and aggregate the
point features to produce the final result.

to perturb the point cloud x0 to generate an augmented point cloud xk:

xk = x0 + λzk (2.2)

where zk ∼ N(0, I) is a random noise vector from a normal distribution, and λ is a scalar value to

control the noise magnitude. This simple augmentation has been widely adopted since the seminal

PointNet [217]. An issue of such augmentation is that it does not consider the underlying surface

or point distribution because the noise z is independent of x0, resulting in marginal performance

improvement in many cases. In this work, we viewpoint set x0 as a noisy estimate of a latent surface

representation S, and therefore, we define point cloud augmentation as the process of sampling

additional point clouds xk that explain the same surface. We propose to sample augmented point

clouds xk (k ⩾ 1) in two ways: surface sampling and point cloud up-sampling. The sampled point

clouds can then be leveraged for downstream tasks such as classification and segmentation. Our

method is visualized in Figure 2.1.

In the following sections, we explain the technique for sampling augmented point clouds

using an implicit representation network (Section 2.3.2) and a self-supervised point upsampling

network (Section 2.3.3). We then present downstream tasks that leverage the proposed test-time

augmentation and discuss feature aggregation and final label prediction for point cloud classification
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and segmentation.

2.3.2 Augmentation by Implicit Field Reconstruction

We are motivated by the recent advances in geometry reconstruction using neural implicit representa-

tion. The basic idea is to learn a mapping fθ : R3 −→ {0, 1} using a neural network parameterized by

θ. This function implicitly encodes the geometry in the 3D space to allow the query of the occupancy

at any point in the 3D space. To obtain the geometry explicitly, the Marching Cubes algorithm [175]

can generate a triangle mesh containing surfaces at zero crossings in the implicit field. Our neural

implicit field is built upon the convolutional occupancy network [191, 212]. The convolutional

occupancy network uses a combination of convolutional and linear layers, thus endowing its features

with equivariance and scalability. This enables the network to produce implicit representations for

both single objects and large-scale scenes. Our implementation uses the network variant that stores

features on a 3D regular grid. Figure 2.2 shows the comparison of different reconstruction methods,

e.g. unsupervised [81], screened poisson [128] and supervised [212] reconstruction.

Encoder. The encoder is a shallow PointNet [217] but with local pooling layers. By using these

input features generated by the local PointNet encoder, we obtain a 323 volumetric feature grid that

captures the local information in the neighborhood of the points, which is necessary to capture local

geometric information about the shape of the input point cloud. Due to memory constraints, the

volumetric feature can represent rich 3D information but is restricted to small resolutions and sizes.

Decoder. To endow the encoder features with inductive bias, the occupancy network uses a 3D

UNet encoder [364] to process the volumetric feature grid. Since U-Net contains convolutional

operations, this also introduces translational equivariance in the encoder features, which makes it

able to predict the occupancy of different shapes but from the same categories. These aggregated

feature maps from the U-Net [231] are then fed into a decoder for predicting occupancy labels.

To predict the occupancy value at any arbitrary position, we use tri-linear interpolation to find the

features at that point by using the features of all points belonging to the same voxel in the volumetric

grid. This point’s location and features are passed through a decoder that outputs an occupancy

value for each 3D grid location.

Surface Sampling. We render an output mesh of the given input point cloud from the predicted

occupancy of the grid points of the convolutional occupancy network using the MISE algorithm [191].
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Figure 2.2: Visual comparison of different reconstruction and upsampling methods. From left
to right: Input, Up-sampling point clouds, Unsupervised reconstruction, Poisson reconstruction, and
Supervised reconstruction. As can be seen, the shape quality of supervised reconstruction [212]
using neural implicit representation is finer and smoother compared to unsupervised method [81]
and Screened Poisson method [128]. In addition, we can obtain a dense and uniformly distributed
proximity-to-surface point cloud using Self-supervised Upsampling [298], which contributes to the
success of our method. Best viewed with zoom.

We then produce an augmented version xk of the original point cloud x0 by randomly sampling a

point cloud from the vertices of the rendered mesh, where k indicates the k-th augmentation.

2.3.3 Augmentation by Point Cloud Upsampling

Inspired by [298], we upsample an input sparse point cloud x = {pi}
n
i=1 ∈ Rn×3 to a dense point

cloud y = {pi}
N
i=1 ∈ RN×3 including N = ⌊r×n⌋ points, where r is a desirable scaling factor (set
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default to 4). The high-resolution point cloud y must be dense, uniform, complete, and noise-tolerant.

The self-supervised point cloud upsampling strategy includes four steps: seeds sampling, surface

projection, outliers removal, and arbitrary-scale point cloud generation.

Seeds Sampling. To obtain uniformly sampled seed points, given a point cloud, we divide the 3D

space into equally spaced voxels and estimate the distance from centers to the surface by computing

the distance to the triangles formed by the nearest points. Then we choose the centers in a preset

range as the seed points.

Surface Projection. Given a seed point c, we obtain the coordinate of the projection point of

the seed point c as: cp = c+ n× d, where n ∈ [−1, 1]3 and d ∈ R are projection direction and

projection distance, respectively. The n and d can be obtained by two multi-layer fully-connected

neural networks fn, and fd, which borrows from Occupancy Network [191] and DGCNN [294].

The detail of architectures and training procedures can be found in [298].

Outliers Removal. For a projection point cp, we determine a point as an outlier if bp > 1.5b,

where bp is the average bias between cp and its nearest points and b is the average bias of all

projection points.

In practice, outlier removal can be regarded as optional, but we empirically found that outlier

removal can yield some minor performance improvement of downstream tasks such as classification

and part segmentation, and therefore use this step by default in the augmentation.

Point Cloud Generation. We upsample the input point cloud x0 to a dense point cloud y using

the upsampling network. Then, we sample a fixed number of points from the upsampled point cloud

y by using the farthest-point sampling algorithm to obtain an augmented point cloud xk with the

desired number of points, where k indicates the k-th augmented point cloud. The examples are

shown in Figure 2.2.

2.3.4 Downstream Tasks.

Object Classification. To leverage the augmented point clouds for classification, for both Point-

Net [217], DGCNN [293], and PointNeXt [220], we extract the global features of each point cloud

xk including the original point cloud x0, and then take an average of the features before passing
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them to the classifier. Without changing of notation, assume that f is the global feature extractor,

and g is the classifier, we can write the label prediction as:

g(avgpool(f(x0), f(x1), f(x2), ...)) (2.3)

Algorithm 1: Pseudo-code for our test-time augmentation for the segmentation task.

# get_log(p): return logit at point p.
# get_feat(p): return 3D coords wo/ or w/ logit
# knn(p, X): return the nearest neighbor of p in X.
# agg(a, b): combine tensors a and b.

for each point p in X_0:
logit = get_log(p)
feat = get_feat(p)
for i = 1 to N

neighbors = knn(feat, X_i)
for each point q in neighbors:

logit = agg(logit, get_log(q))
label = argmax(logit)

Semantic and Part Segmentation. For semantic segmentation and part segmentation, the ag-

gregation function is more evolved. The basic idea is first to perform segmentation on each point

cloud, and then aggregate the results to produce the final segmentation for the original point cloud

x0, but now the aggregation occurs at a per-point level instead of the global features. Let fi(xk) be

the features of point i in point cloud xk, the label prediction of point i in the original point cloud x0

can be written as:

g(ϕ(fi(x0), {fπ1,i(x1)}, {fπ2,i(x2)}, ...)) (2.4)

where πk,i indicates the corresponding points of point i in x0 to point cloud xk, and g as the

classifier or any post-processing network. Here we propose a simple algorithm to establish such

correspondences via nearest neighbors on the logit vectors, which are detailed in Algorithm 1.
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Table 2.1: 3D object classification in ModelNet40 [303] and ScanObjectNN (PB_T50_RS) [275]
using self-supervised upsampling point clouds [298].

Method
ModelNet40 ScanObjectNN

oAcc mAcc oAcc mAcc

PointNet [217] 89.20 86.20 68.20 63.40

Ours 92.07 88.78 76.69 72.93

DGCNN [294] 92.90 90.20 78.10 73.60

Ours 94.23 91.79 87.71 85.84

PointNeXt [220] 93.96 91.14 88.18 86.83

Ours 95.48 92.96 90.38 88.99

PointMixer [37] 91.41 87.89 82.51 80.03

Ours 92.71 90.42 84.18 81.25

PointTransformer [342] 90.64 87.84 82.31 80.77

Ours 92.55 89.73 83.66 81.37

2.4 Experimental Results

2.4.1 Implementation Details

We implement our method in Pytorch. We use the convolutional occupancy network [212], and self-

supervised point upsampling network [298] for test-time augmentation. For downstream tasks, we

experiment with pre-trained models for classification and part segmentation such as PointNet [217],

DGCNN [294], PointMixer [37], PointNeXt [220], PointTransformer [342] as well as for large-scale

semantic scene segmentation such as RandLANet [101].

Dataset and metric. Our experiments are conducted on different datasets such as ShapeNet [19],

ScanObjectNN [275], ModelNet40 [303], SemanticKITTI [8], and S3DIS [4] datasets, including

indoor and outdoor environments with both synthetic and real data.

We employ several popular metrics for evaluation, such as the overall and mean percentage

accuracy are computed for the classification task, the Instance and Category Intersection-Over-Union

(mInsIoU, mCatIoU) are utilized for the part segmentation task, and the mean Accuracy (mACC)

19



and mean IoU (mIoU) are used for semantic segmentation task.

Data processing. For ShapeNet [19] dataset, we use the pre-processed data produced by Point-

Net [217], which is an early version of ShapeNet (version 0) to train the segmentation network.

Nonetheless, the ShapeNet data used to train the convolutional occupancy network [212] is a different

version (version 1). Since the number of objects differs in these variants of ShapeNet, we only use

the objects that appear in both datasets. For ScanObjectNN [275], and ModelNet40 [303] datasets,

we follow the instruction in the official implementation of PointNeXt [220]. For SemanticKITTI [8]

dataset, we follow the instruction in the official implementation of RandLANet [101]. We also

follow Self-UP [298] to prepare the data for point cloud upsampling.

2.4.2 Classification Results

The object classification results are shown in Table 2.1 and are conducted on two challenging

datasets (ScanObjectNN [275], and ModelNet40 [303]). ScanObjectNN presents considerable

problems to the various point cloud analysis algorithms already in use due to occlusions and noise.

Based on PointNeXt [220], we conduct experiments on PB_T50_RS, the most challenging and

widely deployed version of ScanObjectNN. Note that the reported performance of PointNet and

DGCNN in our paper is higher than the original PointNet and DGCNN paper because we adopt the

re-implementation of PointNet and DGCNN from the PointNeXt paper, which includes optimized

training strategies.

As can be seen, the optimized baseline model by PointNet [217] performed very well on both

ModelNet40 and ScanObjectNN classification. Despite such, applying augmentation with our

method leads to a performance boost of 1 − 2%, which is a significant gain given the saturating

accuracy of this dataset. We also empirically found that augmenting with more than one sampled

point cloud does not significantly improve this task.

Note that as convolutional occupancy network [212] requires ground truth signed distance

functions to train surface reconstruction, we only perform the classification task using self-supervised

point upsampling [298].
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Table 2.2: Part segmentation on
ShapeNet [19] using self-supervised
upsampling point clouds as input.

2048 points mInsIoU mCatIoU

PointNet [217] 80.74 83.73
Ours 82.88 86.25

DGCNN [294] 81.08 84.18
Ours 83.38 86.70

PointNeXt [220] 84.23 86.73
Ours 85.07 87.60

Table 2.3: Part segmentation on ShapeNet [19] using surface
sampling with different numbers of points. We can obtain
competitive segmentation results by aggregating predictions
from augmented point clouds to original point clouds.

Method
128 points 256 points

mInsIoU mCatIoU mInsIoU mCatIoU

PointNet [217] 79.06 81.72 83.12 85.12
Ours 79.55 82.66 83.25 85.82

DGCNN [294] 59.75 66.34 69.88 74.57
Ours 71.63 81.95 79.98 85.65

2.4.3 Segmentation Results

Part Segmentation. The part segmentation results are shown in Table 2.2 and Table 2.3. It can

be seen that by applying our method, the mInsIoU, and mCatIoU are improved compared to the

baseline approach. The results also demonstrate the robustness of our method as it works well with

different network backbones, e.g., PointNet [217] that involves only per-point and global point cloud

features, DGCNN [293] which establishes and learns dynamic graphs in point neighborhoods, and

the SOTA PointNeXt [220]. It is worth noting that the improvement is mainly gained from the

refinement of the segmentation boundaries (Figure 2.6 and 2.7 (d)).

Semantic Segmentation. To assess the generalizability of our strategy, we also tested on real-world

data from S3DIS [4] and SemanticKITTI [8] datasets.

As SemanticKITTI data is captured by LiDAR sensors, it is favorable to use point upsampling

as the augmentation technique. It can be seen in Table 2.4, by applying our method, the mAcc, and

mIoU are improved compared to the baseline approach. We provide qualitative results in Figure 2.3

for a better comparison.

We provide quantitative and qualitative results on the S3DIS dataset in Table 2.5 and Figure 2.4.

As can be seen, our TTA is effective and improves upon the baseline PointNeXt.

2.4.4 Additional Analysis

We perform additional experiments to validate the performance of our test-time augmentation. We

select the segmentation task for these experiments as it produces dense prediction, which can be
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Table 2.4: Semantic segmentation on Se-
manticKITTI [8] using self-supervised upsam-
pling point clouds.

Method mAcc mIoU

RandLANet [101] 97.23 68.84

Ours 99.17 70.55

Table 2.5: Semantic segmentation on
S3DIS [4] dataset using self-supervised up-
sampling point clouds.

Method mAcc mIoU

PointNeXt [220] 70.69 64.26

Ours 71.75 65.23

seen as generalized classifications.

Point density. In Figure 2.5, we plot the segmentation accuracies (mIoU) across different numbers

of input points. Specifically, we randomly sample 128, 256, 512, 1024, and 2048 points as input

to perform the segmentation. Compared to PointNet, it can be seen that our augmentation offers

significant performance improvement on sparse point clouds (128 and 256 points) and performs

similarly to PointNet when the input points get denser.

We also found that by varying the number of input points (Figure 2.5), DGCNN cannot perform

well on sparse point clouds with a very large performance gap between the sparse and dense point

clouds (more than 20% between 128 and 2048 points). This is because for sparse point clouds, the

neighbor graphs by DGCNN degenerate [294]. Despite such, our test-time augmentation can still

improve the performance and significantly reduce the performance gap to around 6%. This shows

that our test-time augmentation is robust to the number of input points.

Ablation study. We conduct an ablation study on the part segmentation task on ShapeNet and

provide the results in Table 2.6. We select the segmentation task as it is a generalized form of

classification at the per-point level, and also aim to justify the more complex design choices in the

aggregation function for this task. We use inputs with 2048 points. Our baseline is an implementation

that k-nearest neighbors are performed with just 3D coordinates as features. By adding logits as

features, we can have 2% gain in mIoU (model A). We also test different aggregate functions like

max pooling and average pooling and find that average pooling performs better (model B vs. C).

Additionally, we repeat the sampling to obtain multiple augmented point clouds. By fusing the

segmentation of these augmented point clouds to the original point cloud, further improvement can be

achieved (model A&C and B&C). This shows that it is critical to compute accurate correspondences

between the augmented point cloud and the original point cloud to achieve higher accuracies. From
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RandLANet Ours Ground Truth

Figure 2.3: Semantic segmentation results of RandLANet [101], ours and ground truth on Se-
manticKITTI dataset [8].

the above analysis, we can see that multi-sampling and changing aggregate functions can yield

further improvement.

Comparison among augmentation techniques. We provide a comparison to study which aug-

mentation technique should be used in practice. We compare the popular Screened Poisson re-

construction [128] to convolutional neural network [212] and point cloud upsampling [298]. The

results in Table 2.7 show that our augmentation techniques are more favorable in performance

than Screened Poisson reconstruction. The performance between the convolutional occupancy

network and self-supervised upsampling is rather similar, with the convolutional occupancy network

is slightly better in the instance IoU metric. We hypothesize that when (ground truth) surface

information is available, it could be used to supervise the augmentation, else point cloud upsampling

could be an effective and robust augmentation in several scenarios. We also explore a recent unsu-

pervised reconstruction [81] but find that the shape quality is poor compared to Screened Poisson
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PointNeXt Ours Ground Truth

Figure 2.4: Semantic segmentation results of PointNeXt [220], ours and ground truth on S3DIS
dataset [4]. Our TTA can group and segment well objects.

Table 2.6: Ablation studies of our test-time augmentation on ShapeNet [19] using surface sampling.
Performing k-nearest neighbor search on high-dimensional feature space (model A, B) and using
the average function (model B) for aggregating predictions result in improved accuracies. The
performance can be further boosted by using extra augmented point clouds (model A&C and B&C).
The reported metric is mCatIoU.

2048 points PointNet [217] DGCNN [294]

xyz (max) 86.45 84.26

A: with logit (max) 88.30 85.90

B: with logit (avg) 88.43 86.05

C: with 10x samples 86.39 84.13

A & C (max) 88.26 85.96

B & C (avg) 88.58 86.16

reconstruction, and thus unsuitable for augmentation. Exploring more robust reconstruction could

lead to interesting augmentation techniques for future work.

Augmentation without normals. We experiment with implicit surface representation for data

augmentation in a practical setting where normals are not available. In this case, existing methods

have to rely on the pure 3D coordinates (xyz), causing a performance decrease, while our method
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Figure 2.5: TTA using surface sampling (top row) and self-supervised upsampling (bottom row)
on part segmentation on ShapeNet with different numbers of points. We found that applying TTA
for sparse point clouds of the surface sampling method yields significant improvement. In contrast,
the improvement of TTA on upsampling point clouds is more stable, thanks to dense and uniformly
distributed proximity-to-surface point clouds. The horizontal axis is in log scale.

Table 2.7: Comparison of different augmenta-
tion methods on part segmentation with Point-
Net [217] as backbone on ShapeNet [19] dataset.

128 points mCatIoU mInsIoU

Poisson [128] 81.79 77.86

Implicit [212] 82.66 79.55

Self-UP [298] 82.70 78.99

Table 2.8: Augmentation with normals us-
ing surface sampling on ShapeNet [19]. The
backbone is PointNet [217].

2048 points mAcc

Org. xyz 97.73

Aug. xyz 98.53

Aug. xyz & normals 98.38

can easily solve this problem by sampling the 3D points as well as the normal vectors directly

from the implicit surface. In this way, our method can maintain the performance to the same level

regardless of the normal existence. This is verified in Table 2.8 that our augmentation outperforms

the baseline when only the 3D coordinates (xyz) are available.

Comparison to traditional augmentation. We also conduct comparison experiments with tra-

ditional augmentation. Adding Gaussian noise is a commonly used traditional data augmentation

scheme that perturbs the points by sampling from a Gaussian distribution. Combining results from
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this perturbation in test-time augmentation is known as voting [134, 171]. In our implementation,

we sample offsets from a zero mean Gaussian with different standard deviation σ and add the offsets

back to the original point clouds to form augmented point clouds. For our TTA, we sample one more

point cloud and then average the global features of the additional point cloud and the original point

cloud before passing them to the classifier. As can be seen in Table 2.9, our method outperforms

the traditional augmentation scheme. This shows the advantage of our method that sampling points

from the surface reconstructed by the implicit representation is unnecessary to tune the standard

deviation σ, which is sensitive to point density.

In addition, the results from using flip and scale are shown in Table 2.10 on ModelNet40, which

confirms the better performance of our method. The crop is not effective in our case because cropped

point clouds are very different from the original point clouds.

Table 2.9: Comparison with traditional
augmentation Gaussian Noise using
surface sampling on ShapeNet [19].
The backbone is PointNet [217].

2048 points mAcc

σ = 0.05 98.21

σ = 0.07 97.69

σ = 0.1 96.54

Ours 98.53

Table 2.10: Comparison with traditional augmentations,
e.g. scale (S) and flip (F) on ModelNet40 [303].

PointNet S(0.6) S(0.8) S(2.0) Ours

mAcc 83.88 82.35 82.58 83.14 85.34
oAcc 86.91 86.56 86.88 86.92 88.65

PointNet F(xyz) F(yz) F(xy) Ours

mAcc 83.88 81.51 81.69 81.63 85.34
oAcc 86.91 86.16 86.44 86.53 88.65

Computation overhead. While having better performance, modern TTA, including our method,

relies on a neural network to predict augmented samples from each input and thus has more overhead

compared to traditional methods. For example, if we use M augmented point clouds, the overhead

is approximately M times the original time cost. To circumvent this problem, we propose to exploit

parallelism and use batched inference instead. First, our computation overhead is sub-linear, which

means that even if we have 10 times as many augmented samples (the same number of augmented

samples that we used for all of our experiments), the overhead will only increase by a factor of two

(see Table 2.11). This overhead is manageable and can be reduced even further through the utilization

of batched prediction, as demonstrated in Table 2.11 below. Additionally, additional engineering like

deploying the network to an inference-only framework (TensorFlow Lite) would further optimize
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inference. Second, we can reduce the number of augmented samples (M ∈ {2, 4, 8, 10}), which

would result in milder improvement in comparison to the baseline but would incur significantly less

overhead (see Table 2.11). Finally, the overhead of TTA can be offset by its ease of use compared to

other methods for performance improvement, e.g., when only pre-trained models are given or when

retraining the entire model is not possible.

Table 2.11: Running time breakdown of different stages of our TTA with different augmentation
samples M for the classification task on ModelNet40.

M=10 M=8 M=4 M=2 PointNeXt

Batched forward 10x 0.6573 0.1025 0.1021 0.1016 0.2147
Batched GPU FPS 10x 0.1036 0.5258 0.2892 0.1446 0.0

Aggregation 0.0968 0.0959 0.0948 0.0934 0.0
Others 0.4382 0.4334 0.4295 0.4252 0.4382

Total time 1.2959 1.1576 0.9156 0.7648 0.6529

mAcc 92.96 92.51 91.87 91.38 91.14

2.5 Discussion and Conclusions

We presented a new method for augmenting point clouds at test time by leveraging a neural implicit

network and a point upsampling network to sample augmented point clouds and showed that such

augmentation works effectively for the classification and semantic segmentation task. Our results

are encouraging since this is one of the first attempts to design a test-time augmentation technique

for 3D point cloud deep learning.

A main difference between our TTA and traditional methods is that traditional methods only

use simple transformations and are thus lightweight, but not input-aware and less robust. While

our TTA requires more resources, the extra computation remains affordable and our method shows

good results across tasks and datasets. We believe further explorations to reduce such performance

trade-offs would be valuable contributions to this less-explored area of test-time augmentation for

3D point clouds.
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(a) Input (b) Reconstruction (c) Our result (d) Difference map (e) Ground truth

Figure 2.6: Visualization of part segmentation results. As can be seen in the difference map, where
blue and red points indicate correct and wrong labels, respectively, our test-time augmentation
mainly deals with the labels along the boundaries, improving their accuracies through aggregating
predictions from augmented point clouds.
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(a) Input (b) Reconstruction (c) Our result (d) Difference map (e) Ground truth

Figure 2.7: Visualization of part segmentation results. As can be seen in the difference map, where
blue and red points indicate correct and wrong labels, respectively, our test-time augmentation
mainly deals with the labels along the boundaries, improving their accuracies through aggregating
predictions from augmented point clouds.
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CHAPTER 3

4D DYNAMIC POINT CLOUDS FLOW
ESTIMATION AND SHAPE RECONSTRUCTION

3.1 Introduction

Literature has shown several breakthroughs in deep learning for reconstruction of 3D models from

point clouds. Recently, the research community has seen great successes in neural representations

using implicit fields [192, 208, 28, 194], which pave an effective way on how 3D data can be

represented by neural networks. Unlike traditional representations that are often realized in discrete

forms (e.g., discrete grids of pixels in image representation, discrete grids of voxels in 3D object

representation), the neural implicit representation parameterizes a signal as a continuous function via

a neural network. This function maps a signal from its original domain, which can be queried at any

resolution, to an output domain that captures some properties of the query. Most existing methods

focus on the neural representation of 3D data in static conditions. However, in reality, real-world

objects exist in dynamic environments that change over time and space, and thus cannot be well

modeled using implicit representations applied to static shapes. Approaches for 4D reconstruction

(i.e., reconstruction of a 3D object over time) have been explored but they often need expensive

multi-view settings [148, 41, 198, 5]. These settings rely on a template model (of the target object)

with fixed topology [2, 124, 274, 347], or require smooth spatio-temporal input [211, 279], and thus

limiting their applicability in practice.

To enable object reconstruction directly from 4D data without predefined templates, OFlow [202],

a pioneering method for 4D reconstruction, was developed to calculate motion fields of 3D points

in a 3D point cloud in space and time to implicitly represent trajectories of all the points in dense

correspondences between occupancy fields. To learn the motion fields in both space and time

domains, OFlow made use of a spatial encoder to learn the spatial structure of the input point cloud

and a temporal encoder to learn the temporal changes of the point cloud in time. Despite impressive

reconstruction results, this paradigm has a number of drawbacks. First, its spatial encoder does

not take geometric attributes from numerous frames into consideration, impairing the capacity
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Time

Figure 3.1: Summary of our method. Given a sequence of time-varying 3D point clouds (first row),
we jointly reconstruct corresponding 3D geometric shapes (second row) and estimate the motion
field for every point, including the original points and reconstructed points (third row).
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to precisely reconstruct geometric surfaces. Neither does its temporal encoder take into account

temporal correspondences, which are critical for accurately capturing temporal dynamics. Second,

errors in the prediction of temporal continuity and reconstructed geometries are accumulated by

an integral of estimated instantaneous findings. Third, OFlow is trained using supervised learning.

This requires correspondence labeling for all 3D points across frames in training data, leading to

high labeling costs and low scalability. Fourth, the method exhibits low computational efficiency

in both the training and inference phases. This is due to the expensive computations required

to sequentially determine trajectories of 3D points throughout time by solving complex ordinary

differential equations.

To address the aforementioned challenges, we propose a network architecture, namely RFNet-

4D++, for 4D reconstruction and flow estimation of dynamic point clouds. Our key idea is to

jointly perform two tasks: 4D reconstruction and flow estimation with an intention that each task

can leverage the other one to improve the overall performance. Specifically, our network takes as

input a sequence of 3D point clouds of an object over time. The point clouds are encoded using a

dual cross-attention-based compositional encoder, resulting in spatio-temporal representations. The

spatio-temporal representation of a point cloud at a time step is calculated from the spatial layout of

points in that point cloud and the temporal changes of the points in the point cloud throughout time.

Spatio-temporal representations are then decoded by a joint decoder which jointly reconstructs the

object and predicts a motion vector for each point in the reconstructed object throughout time. The

entire network can be trained end-to-end, where the reconstruction and flow estimation tasks are

trained with supervised and unsupervised learning, respectively.

Our method offers numerous advantages. First, our method relaxes the requirement of point-

to-point correspondence labelling by making flow learning unsupervised. Second, our method

allows fast inference by enabling parallel computations of spatial and temporal features. This ability

makes our method much advantageous in comparison with OFlow which estimates the motion

flows sequentially and thus often experiences time lags. We illustrate several results of our method

in Figure 3.1. In summary, the contributions of our work are as follows:

• RFNet-4D: a network architecture for joint object reconstruction and flow estimation from a

sequence of time-varying 3D point clouds.

• A joint learning method for training the proposed RFNet-4D using both supervised and

unsupervised learning, and in both forward and backward time direction. To the best of our
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knowledge, this learning mechanism is novel, and its benefit is verified throughout extensive

experiments and datasets.

• We propose a new spatio-temporal representation that utilizes a dual cross-attention mechanism

to improve the overall accuracy of our method (namely RFNet-4D++).

• Extensive experiments and analyses on D-FAUST (human) and DeformingThings4D (hu-

manoids, and various animal species) that prove the effectiveness and efficiency of our

proposed method on two tasks: 4D reconstruction and flow estimation.

3.2 Related Work

3.2.1 3D Reconstruction

Numerous studies have been conducted with the goal of reconstructing a continuous surface from a

variety of inputs, including RGB images [262, 297, 126], point clouds [128]. Thanks to advances

in deep learning, recent 3D object reconstruction approaches have resulted in significant progress.

Early attempts represent reconstructed objects in a regular grid of 3D voxels [285, 78] or point

clouds [216, 70]. However, those representations cannot well capture surface details and suffer from

low resolutions. Alternatively, there are methods, e.g., [284, 159, 123] reconstructing triangular

meshes (including vertices and faces) of 3D objects. In these methods, an initial template with

fixed topology is employed and the reconstruction is performed using regression. For surface

representation, several methods focus on learning an implicit field function that allows more variable

topology in reconstructed objects [36, 18, 59, 117].

To extend the ability of implicit functions on representations other than traditional forms (i.e.,

voxels, points, meshes), occupancy maps [192, 213] and distance fields [208, 18] are proposed. An

occupancy map of a 3D point cloud contains indicators that indicate being foreground of points in

the 3D space. A distance field provides the distance from every point to its nearest surface. Since the

implicit function models objects in a continuous manner, more information is preserved and more

complicated shapes can be well described. For instance, Occupancy Network in [192] described a

3D object using continuous indicator functions that indicate which sub-sets of 3D space the object

occupies, and an iso-surface retrieved by employing the Marching Cube algorithm [176].
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3.2.2 4D Reconstruction

Despite being less studied compared with 3D reconstruction, literature has also shown recent

attention of the research community to 4D reconstruction, i.e., reconstruction of a sequence of 3D

objects from time-varying point clouds [148, 198, 5]. In this section, we limit our review to only

learning-based 4D reconstruction methods.

A crucial component in 4D reconstruction is motion capture and modelling. Niemeyer et al. [202]

introduced a learning-based framework that calculates the integral of a motion field specified in space

and time to implicitly represent the trajectory of a 3D point cloud to generate dense correspondences

between occupancy fields. Jiang et al. [116] proposed a deformable representation for 4D capture

that encloses a 3D shape and the velocity of its 3D points over time. Specifically, to simulate the

motion of time-varying 3D data, a neural Ordinary Differential Equation was trained to update

the starting state of the motion based on a learnt motion representation. A 3D model at each time

step was then reconstructed using a shape representation and a respective motion state. Tang et

al. [261] proposed a pipeline for determining the temporal evolution of the 3D shape of the human

body using spatially continuous transformation functions between cross-frame occupancy fields. By

explicitly learning of the continuous displacement motion fields, the pipeline aims to construct dense

correspondences between projected occupancy fields at different time steps. Li et al. [156] presented

4DComplete, a model to combine geometry completion with non-rigid motion tracking. They

argued that the shape and motion of non-rigid objects are intricate data modalities, i.e., the geometry

provides valuable information for motion estimation and the motion is seen as the evolution the

geometry in time.

3.2.3 Motion Transfer

Traditional techniques for 3D pose transfer problems often use discrete deformation transfers. An

example of mesh deformation is described in [282], where spatially adaptable instance normalisa-

tion [107] was used to modify 3D meshes. However, this method requires a dense triangular mesh

of an object to be given in advance, while there is a specific mechanism to depict continuous flows

in both spatial and temporal domains.

3D motion transfer is another technique for creating 3D objects from a pair of source and target

object sequences. It operates by causing the target object sequence to undergo the same temporal
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deformation in the source object sequence. This technique can be applied to model the continuous

transformation of an object’s pose over time. For instance, OFlow [202] transmitted motion across

sequences of source and target human models by applying motion field-based representations to

the targets in a predetermined manner. However, since OFlow does not explicitly differentiate the

representations of pose and shape, we found that it only produces reasonable motion transfer results

when the identities and initial poses of both the source and target objects are similar.

3.2.4 Shape Correspondence Modelling

Modeling of point-to-point correspondences between two 3D shapes is a well-studied topic in

computer vision and computer graphics [10]. The goal of modeling time-varying occupancy fields

is strongly related to the goal of field-based deformation [183], which we have previously discussed.

However, most of these works describe the motion fields only on object surfaces. To better describe

the motion flow, we argue to model the correspondences between 3D shapes in the entire 3D space.

When modelling the growth of a signed distance field, Miroslava et al. [247] chose to implicitly

provide the correspondences between points in two 3D shapes rather than yielding them explicitly.

The point-to-point correspondence estimation was formulated as the optimisation of an energy

function capturing the similarity between the Laplacian eigen function representations of the input

and the target shapes. However, we found that this method is sensitive to noise, probably due to lack

of the capability of providing correspondences accurately from signed distance fields. In contrast, we

learn the rich correspondences between time-varying occupancy fields based on a intuitive insight,

that the occupancy values of points are always invariant under temporal evolution of the occupation

fields (please check the method and experiment sections for more details).

Recently, there are methods modelling deformable shapes overtime using implicit functions

(continuous signed distance fields), e.g., DIT [350], NDF [255], ImplicitAtlas [319]. DIT [350]

employed LSTM [99] to model smooth deformations, while NDF [255] utilised NODE [25] to

achieve diffeomorphic deformations. On the other hand, ImplicitAtlas [319] leveraged the integration

of multiple templates to enhance the capability of shape modelling. Remarkably, this improvement

in shape modelling comes at a minimal computational cost, making ImplicitAtlas [319] an efficient

choice for practical applications. By combining multiple templates, ImplicitAtlas [319] is shown

to effectively capture and represent complex shape variations while maintaining computational

efficiency.
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3.3 Our Method

3.3.1 Overview

Our network takes as input a sequence of sparse, incomplete, and noisy 3D point clouds {Pt|t =

1, ..., T } where T is the length of the sequence, and each point cloud Pt is a set of 3D locations. Our

aim is to simultaneously perform the following tasks:

• Reconstruct a sequence of occupancy maps {Ot|t = 1, ..., T } where each Ot is an occupancy

map of a point cloud Pt, i.e., Ot(p) = 1 if p is a 3D point on the reconstructed surface of Pt,

and Ot(p) = 0, otherwise;

• Estimate a sequence of vector fields {Vt|t = 1, ..., T } where each Vt is a 3D vector field

capturing motion flows of reconstructed points of Pt, i.e., Vt(p) ∈ R3 represents the motion

flow of a reconstructed point p at time step t given a point cloud Pt.

Both tasks benefit from a compositional encoder that learns spatio-temporal representations from

time-varying point clouds. The temporal features contained in these spatio-temporal representations

capture holistic motion information and are computed once on the entire input point cloud sequence.

This allows fast computations in following operations as spatio-temporal data can be processed at any

arbitrary frame. The spatio-temporal representations are processed by a joint decoder including two

decoders, each of which extracts relevant information for its downstream task (i.e., reconstruction

and flow estimation). These decoders do not operate independently but cooperate closely to fulfill

their tasks. To further exploit the benefit of temporal information, we couple the reconstruction and

flow estimation tasks in both forward and backward time directions. We present an overview of our

method inFigure 3.2. We describe the main components of our method in the following sections.

3.3.2 Compositional Encoder

The compositional encoder includes a temporal encoder and a spatial encoder. There exist sev-

eral manners to encode 4D point clouds. For instance, Liu et al. [170] applied spatio-temporal

neighborhood queries in representing 4D point clouds. However, this method requires high compu-

tational complexity. Inspired by the success and efficiency of the point cloud representation used

in OFlow [202] and LPDC [261], we adopt the parallel ResNet [93] variant of PointNet [218] for

both the spatial and temporal encoder (see Figure 3.3). These encoders are basically similar in their

architectures. The difference between them is that while the spatial encoder processes each point
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Figure 3.2: Overview of our method RFNet-4D++. An input 3D point cloud sequence is fed into a
spatio-temporal encoder to extract spatio-temporal representations. The representations are then
passed via two distinct decoders, occupancy and motion decoders. In each data frame, the occupancy
decoder aims to predict an occupancy field of the point cloud in the frame. Simultaneously, the
motion decoder predicts the correspondences between points in the current frame and its preceding
frame. ⊗ indicates a concatenation operation.

cloud Pt individually at a time t to generate a representation st, the temporal encoder acquires the

whole point cloud sequence to calculate a holistic temporal representation h once.

The spatial and temporal representations are finally fused to form a spatio-temporal representation

et that encodes the geometric information of a point cloud Pt in space with regard to its temporal

changes (see Figure 3.2). Our encoders share similar structures with the encoders in LPDC [261].

In our original work (RFNet-4D) [268], we created the spatio-temporal representation by simply

concatenating the spatial and temporal features. However, such simple concatenation does not

effectively capture the topology the point clouds’ structures over time (e.g., different parts of

a human body in motion can have different velocities while still obeying topological rules of

deformation). To overcome this issue, we introduce here a dual cross-attention fusion module

(DCAF) that effectively learns the correlation between spatial and temporal features. Our DCAF is

inspired by the works in [112, 49], which learn attention scores across different modalities.

We describe the architecture of the DCAF module in Figure 3.4. The DCAF module includes

two sub-modules: a Spatial-guided Cross Attention (SCA) module and a Temporal-guided Cross

Attention (TCA) module. In the SCA module, we utilise the spatial representation St for a query

and the temporal representation h for a key and a value. This configuration enables us to effectively
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Figure 3.3: Spatial/temporal encoder. The input dimension d is set accordingly to a corresponding
encoder. In particular, d = 3 (i.e., (x,y, z)-coordinates) for the spatial encoder and d = 4 (i.e.,
(x,y, z)-coordinates and time variable) for the temporal encoder. ⊗ indicates a concatenation
operation. Outputs of the spatial and temporal encoder are St and h, respectively.

capture inter-point spatial dependencies in a point cloud, allowing for extraction of a global spatial

context eSCAt . The TCA module takes two inputs: a concatenated representation (from St and

h) which serves as a query, and the output of the SCA module eSCAt which forms a key and a

value. Unlike the SCA module, the TCA module aims to extract a global temporal context eTCAt by

integrating all spatial positions across different time steps. Each the SCA/TCA module consists of

several layer normalisation and projection transformations implemented by fully connected layers.

The spatio-temporal representation et is finally formed by element-wise addition of eSCAt and eTCAt .

Following the conventional definition of cross attention [112, 49], the output of a cross attention

module (SCA/TCA) can be expressed as:

Cross-Attention(Q,K,V) = Softmax
(
QK⊤
√
C

)
V (3.1)

where Q,K,V represent the projected queries, keys and values, respectively, 1√
C

is the scaling factor

where C is the number of total channels.

Depending on the particular cross attention module (SCA/TCA), Q,K,V are defined accordingly.

Specifically, as shown in Figure 3.4, for the SCA, Q is calculated from St, while K and V are derived

from h. On the other hand, for the TCA, Q is obtained from the concatenation of St and h, while K

and V are determined from the output of the SCA module.

Since h is computed once on the entire input point cloud sequence, et can be extracted at any
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Figure 3.4: Dual cross-attention fusion (DCAF) module and its sub-modules: Spatial-guided
Cross Attention (SCA) and Temporal-guided Cross Attention (TCA). Inputs are the spatial
and temporal representations St and h, and output is a spatio-temporal representation et which
captures long-range contextual information in both temporal and spatial dimensions. ⊕ denotes an
element-wise addition operation and ⊗ denotes a concatenation operation.

arbitrary time step t without time lags, as opposed to methods processing point clouds sequentially,

e.g., OFlow [202]. Thanks to this advantage, the processing time of RFNet-4D++ can be optimised

by calculating the spatio-temporal representations et for all the time steps t in parallel.

3.3.3 Joint Decoder

The joint decoder takes a spatio-temporal representation et and the original point cloud sequence as

input then passes this input into two decoders (temporal decoder and occupancy decoder) to perform

flow estimation and object reconstruction. Our temporal decoder and occupancy decoder are built

upon the architecture from LPDC [261]. However, instead of decoupling the decoders as in [261],

we hypothesized that jointly addressing two tasks by sharing information between corresponding

decoders can leverage individual tasks. As a consequence, the close collaboration of flow estimation

and object reconstruction allows some relaxation in the supervision need.

The temporal decoder operates as follows (see Figure 3.5 (a)). We first extract a spatio-temporal

representation e1 for the first point cloud P1 from the input sequence, using the compositional
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encoder. For each following point cloud Pt, we compute its spatio-temporal representation et, then

concatenate et with e1. This concatenated representation captures temporal changes of Pt in relative

to P1, and is again concatenated with all points in Pt to be processed by a series of five ResNet

residual blocks [93]. Each block consists of two fully connected layers with skip connections and

ReLU activation functions [79]. The outcome of these blocks is a feature map, namely ft. This

feature map is finally passed to a fully connected layer, returning a motion field Vt describing the

motion of Pt.

The occupancy decoder is slightly different from the temporal decoder (see Figure 3.5 (b)). Also

different from all existing methods, our occupancy decoder works collaboratively with the temporal

decoder. Particularly, input for the occupancy decoder to reconstruct the object at time step t includes

a point cloud Pt, a spatio-temporal representation et (obtained from the compositional encoder), and

a flow feature map ft (returned by the temporal decoder). The point cloud Pt is first processed by a

fully connected layer to extract a feature map. Similarly, the spatio-temporal representation et is fed

to two different fully connected layers to obtain feature maps β and γ. These output feature maps

(from Pt and et) are passed to a series of five residual blocks, similar to those used in the temporal

decoder. Following ONet [192], we apply Conditional Batch Normalization (CBN) introduced

in [58, 45] to β and γ. Finally, the flow feature map ft is injected into the occupancy decoder to

produce an occupancy map Ot(p), where Ot(p) = 1 if the point p belongs to the object at time

step t, and Ot(p) = 0 otherwise.

Following [111], the CBN layers are implemented in the following way. First, we pass et

through two fully-connected layers to obtain 128-dimensional learnable parameter vectors β(et) and

γ(et). We next normalize a 128-dimensional input feature vector fBNin using first and second-order

moments, then multiply the normalized output with γ(et) and finally add the bias term β(et) as,

fBNout = γ(et)
fBNin − µ√
σ2 + ϵ

+β(et),

where µ and σ are the empirical mean and standard deviation (over the batch) of the input

features fBNin and ϵ = 10−5 (the default value of PyTorch). Moreover, we compute a running mean

over µ and σ2 with momentum 0.1 during training. At inference time, we replace µ and σ2 with the

corresponding running mean.
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Figure 3.5: Architecture of the temporal and occupancy decoder; ⊕ indicates a concatenation
operation. The temporal decoder returns both a motion field Vt and a motion feature map ft, which
is then inputted to the occupancy decoder.

3.3.4 Joint Learning

Our RFNet-4D++ is trained by jointly performing two optimization processes: unsupervision for

flow estimation and supervision for object reconstruction. Existing works train flow estimation using

supervised learning [70, 192, 202, 261, 116], requiring fully annotated point correspondences in

training data. In this work, we propose to learn point correspondences in a point cloud sequence via

an unsupervised manner, thus opening ways to new applications and more training data. Specifically,

let Vt be a motion field (i.e., a set of 3D vectors) at Pt, Vt is estimated using the temporal decoder.

We measure the correspondences between points in Pt and Pt+1 via the Chamfer distance between

Pt+1 and a translated version of Pt made by Vt (i.e., Pt + Vt). We define our flow loss as follows,

Lflow =
∑
t

max
{

1
|Pt|

∑
p∈Pt+Vt

min
p ′∈Pt+1

∥p − p ′∥2,

1
|Pt+1|

∑
p ′∈Pt+1

min
p∈Pt+Vt

∥p ′ − p∥2

}
(3.2)

The reconstruction task can be trained using a supervised approach. We use conventional

binary cross entropy (BCE) loss to measure the difference between predicted occupancy maps and

corresponding ground truth maps. Specifically, we define our reconstruction loss as follows,

Lreconstruction =
∑
t

∑
p∈Pt

LBCE

(
Oi (p) ,Ogt

i (p)
)

(3.3)
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where O
gt
i represents the ground truth occupancy map of the point cloud Pt.

Finally, we use the following loss to train the entire RFNet-4D++,

L = Lflow + λLreconstruction (3.4)

where λ is a hyper-parameter.

To further exploit the benefit of temporal information, we train our RFNet-4D++ in both forward

and backward directions in time. Particularly, we calculate the holistic temporal representation

h for two sequences {P1, ...,PT } (forward) and {PT , ...,P1} (backward), and use h to encode the

spatio-temporal representations et in both forward and backward time direction. As shown in

our experiments, this training strategy improves the performance of our network in both object

reconstruction and flow estimation tasks.

3.4 Experiments

3.4.1 Experimental Setup

Dataset. We trained and evaluated our method on the pre-processed data of D-FAUST dataset [11],

a benchmark dataset commonly used in state-of-the-art. D-FAUST dataset contains raw-scanned

and registered meshes for 129 sequences of 10 human subjects (5 females and 5 males) with various

motions such as “shake hips”, “running on spot”, or “one leg jump”. We followed the train/test split

used in [202]. Specifically, we divided all the sequences in the D-FAUST dataset into three sets:

training set (105 sequences), validation set (6 sequences), and test set (21 sequences). Since each

sequence is relatively long (with more than 1,250-time steps) and in order to increase the size of the

dataset, we sub-sampled each sequence into smaller sub-sequences of 17 to 50 time steps.

Our proposed method was also evaluated on the DeformingThing4D-Animals [156] dataset,

which consists of 1494 non-rigidly deforming animations featuring 40 identities belonging to 24

categories. We follow [260] to establish a train/test split, we divided all animations into training set

(1296) and test set (198). Similar to the D-FAUST [11] dataset, the train/test split is based on these

identity and motion names of deforming sequences. To begin with, we initially split the dataset’s

animations into two categories: seen identities and unseen identities. Within the animations of seen

identities, we further separate them into two subsets: seen motions of seen identities, which we

42



utilize as the training set, and unseen motions of seen identities, which serve as test set S1. The

animations belonging to unseen identities are reserved exclusively for test set S2. As a result, the

train, test set S1, and test set S2 consist of 1296, 143, and 55 deforming sequences, respectively.

Implementation Details. We implemented our method in Pytorch. We adopted Adam opti-

mizer [131] where the learning rate γ was set to 10−4 and decay was set to 5,000 iterations. We

empirically set λ to 0.1 in our experiments. Our RFNet-4D was trained with a batch size of 16, and

on a single NVIDIA RTX 3090 GPU. We evaluated all the variants of our network (see Ablation

study) on the validation set for every 2,000 iterations during the training process and used the best

model of each variant on the validation set for evaluation of the variant on the test set. The training

process was completed once there were no further improvements achieved. For calculating the

losses during training, we randomly sampled a fixed number of 512 points in 3D space and time

interval for reconstruction loss, and uniformly sampled trajectories of 100 points for flow estimation

loss. More details can be found in our supplied code.

We also followed the evaluation settings used in [202, 268]. Specifically, for each evaluation, we

carried out two case studies: S1 - seen individuals but unseen motions (test subjects were included

in the training data but their motions were not given in the training set), and S2 - unseen individuals

but seen motions (test subjects were found only in the test data but their motions were seen in the

training set).

Evaluation Metrics. To measure the performance of 4D reconstruction, we applied the common

volumetric IoU (Intersection over Union) and the Chamfer distance reflecting the coincidence of

reconstructed data and ground-truth data. To evaluate flow estimation, we used ℓ2-distance to

measure the correspondences between estimated flows and ground-truth flows.

We use volumetric IoU and Chamfer distance for the evaluation of object reconstruction at each

time step. Following [192], for each point cloud, we randomly sample 100,000 points inside or on

the reconstructed result (i.e., predicted mesh) of the point cloud and determine whether these points

lie inside or outside its corresponding ground truth mesh. Then the volumetric IoU is computed as

the ratio of the volume of the intersection and union of the predicted mesh and ground truth mesh.

The Chamfer distance is defined as the mean of accuracy and a completeness metric. The accuracy

metric is defined as the mean distance of points on the predicted mesh to their nearest neighbors on

the ground truth mesh. The completeness metric is defined similarly, but in the opposite direction,
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i.e., given a ground truth point, its nearest neighbor on the predicted mesh is used. We estimate

both accuracy and completeness metrics efficiently by randomly sampling 100,000 points from both

predicted and ground truth mesh and using a KD-tree to estimate corresponding nearest neighbors

from the meshes.

To evaluate flow estimation, we adopt the ℓ2-distance used in [202]. Specifically, given a

reconstructed mesh and a 3D vector field at a time step t of a point cloud Pt, we apply the vector

field on vertices of the reconstructed mesh to estimate their locations at time step t+ 1. We then find

the corresponding nearest points of these new locations on the ground truth mesh of Pt+1 at time

step t+ 1. These nearest points can be computed efficiently using a KD-tree. We finally measure

the mean of ℓ2-distances between estimated locations and their corresponding nearest points. Note

that point correspondences are available in the D-FAUST dataset. However, since our RFNet-4D is

trained to estimate motion flows in an unsupervised manner, these point correspondences are only

used for evaluation. In contrast, they are used for both training and evaluation in existing methods,

e.g., PSGN-4D, OFlow, and LPDC.

3.4.2 Results

We report the performance of our method in two case studies in Table 3.1. As shown in the

experimental results, our method performed better in the seen individuals case study, for both object

reconstruction and flow estimation. However, our method works consistently, and the differences

in all performance metrics between the two case studies are marginal. For instance, the IoU

difference between the two case studies is less than 4%, the differences in Chamfer distance and ℓ2

correspondence between these case studies are about 0.005 × 10−3 and 0.015 × 10−2 respectively.

In addition to the evaluation of RFNet-4D++, we also compared it with its previous ver-

sion RFNet-4D [268] and with other existing methods including PSGN-4D [70], ONet-4D [192],

OFlow [202], LPDC [261], and 4DCR [116]. For the existing works, we re-trained using their

released source code (for some methods, our reported results are higher than their original reported

numbers). We show comparison results in Table 3.1. It can be seen that RFNet-4D++ outperforms

its previous version RFNet-4D and all other baselines in 4D reconstruction using both IoU and

Chamfer distance metrics. In flow estimation, RFNet-4D++ still outperforms RFNet-4D but achieves

comparable performance with state-of-the-art on seen individuals, e.g., there is a slight difference

(about 0.1 × 10−2) in ℓ2-distance from the first ranked method (LPDC). However, unlike existing
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Table 3.1: Quantitative evaluations and comparisons on the D-FAUST dataset of RFNet-4D++
and existing methods in object reconstruction and flow estimation. The first five methods are trained
with point-to-point correspondence labels (i.e., fully supervised learning), while the last two methods
(RFNet-4D and RFNet-4D++) are trained without point-to-point correspondence supervision. We
report the volumetric IoU (higher is better), Chamfer distance (lower is better), and correspondence
ℓ2 distance (lower is better). The notation ’-’ means no results, e.g., PSDN-4D does not perform
reconstruction, and ONet-4D and 4DCR do not predict point correspondences across time. For each
evaluation metric, the best and second best performances are bold and underlined, respectively.

Method

Test set S1:
Seen Individuals, Unseen Motions

Test set S2:
Unseen Individuals, Seen Motions

IoU↑
Chamfer↓
(×10−3)

Corres.↓
(×10−2) IoU↑

Chamfer↓
(×10−3)

Corres.↓
(×10−2)

PSGN-4D [70] - 0.619 1.108 - 0.688 1.329

ONet-4D [192] 0.771 0.592 - 0.683 0.701 -

OFlow [202] 0.817 0.177 0.869 0.736 0.274 1.084

LPDC [261] 0.851 0.153 0.780 0.762 0.219 0.987

4DCR [116] 0.817 0.167 - 0.697 0.222 -

RFNet-4D [268] 0.855 0.151 0.883 0.816 0.159 0.864
RFNet-4D++ 0.866 0.146 0.871 0.835 0.142 0.886

works following supervised paradigm, RFNet-4D++ is trained in unsupervised fashion requiring no

point-to-point correspondence labelling. Table 3.1 also show that, both RFNet-4D and RFNet-4D++

methods stand out in flow estimation on unseen individual sequences, proving the ability of our

architecture and joint learning of spatio-temporal representations of novel object shapes.

We report the results of RFNet-4D++, RFNet-4D, and LPDC on the DeformingThing4D-Animals

dataset in Table 3.2, which also shows consistent performance trend with the D-FAUST dataset (i.e.,

reconstruction of unseen individuals with seen motions is more challenging than its counterpart case

study). The results clearly demonstrate the dominance of RFNet-4D++ over its previous version

RFNet-4D and LPDC in 4D reconstruction, evident by its superior performance on both the IoU

and Chamfer distance metrics. In flow estimation, RFNet-4D++ outperforms RFNet-4D on both

the case studies. The supervised approach (LPDC) still shows its advantage over the unsupervised

one (RFNet-4D, RFNet-4D++) on the ℓ2-distance, though the difference is subtle (e.g., the averaged

ℓ2-distance difference between the results of LPDC and RFNet-4D++ is about 0.041 × 10−1 on the

test set S1 and 0.022 × 10−1 on the test set S2). However, labelling of point correspondences in
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Table 3.2: Quantitative evaluation on the DeformingThing4D-Animals dataset of RFNet-4D++
and existing methods object reconstruction and flow estimation. We report the volumetric IoU
(higher is better), Chamfer distance (lower is better), and correspondence ℓ2 distance (lower is
better). For each evaluation metric, the best and second best performances are bold and underlined,
respectively. Note that, for fully supervised learning-based methods, e.g., PSGN-4D, ONet-4D,
OFlow, 4DCR, we showcase only LPDC as we found it performs best among them.

Method

Test set S1:
Seen Individuals, Unseen Motions

Test set S2:
Unseen Individuals, Seen Motions

IoU↑
Chamfer↓
(×10−3)

Corres.↓
(×10−1) IoU↑

Chamfer↓
(×10−3)

Corres.↓
(×10−1)

LPDC [261] 0.759 0.153 0.209 0.569 0.132 0.361

RFNet-4D [268] 0.774 0.149 0.305 0.569 0.127 0.387

RFNet-4D++ 0.789 0.134 0.251 0.582 0.121 0.383

supervised learning is extremely labour-intensive and requires complicated data capture setup. In our

contrast, our method, due to its unsupervised learning nature, can open up possibilities for broader

applicability and scalability in various scenarios where labelled data may be limited or unavailable.

We visualize several results of our methods and existing ones in Figure 3.7 and Figure 3.8. To

illustrate these results, we apply the Multiresolution IsoSurface Extraction (MISE) algorithm [192]

and the Marching Cubes algorithm [176] on reconstructed occupancy maps to generate surface

meshes. As shown in the results, compared with existing methods, RFNet-4D++ achieves better

reconstruction quality with more-detailed geometry recovery. For instance, in Figure 3.7, the

reconstructed hands produced by our method are more complete. In addition, by coupling both

spatial and temporal information, the poses of body parts, e.g., the head, and the lower arms, are well

preserved by our method (in reference to corresponding ground truth meshes). RFNet-4D++also

shows better flow estimation than existing works as clearly demonstrated in the predicted flows in

the two hands in Figure 3.7.

3.4.3 Ablation Studies

In this section, we present ablation studies to verify various aspects of our method including: ❶

fusion technique used in the compositional encoder, ❷ variants of RFNet-4D++, ❸ impact of spatial

and temporal resolutions, and ❹ effectiveness of RFNet-4D++’s components when applied in a
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Table 3.3: Fusion techniques. Ablation study on various fusion techniques used to fuse the
spatial and temporal features in the Compositional Encoder. For each evaluation metric, the best
performance is highlighted. “CR” means cross-attention.

Dataset
Fusion

technique

Test set S1:
Seen Individuals, Unseen Motions

Test set S2:
Unseen Individuals, Seen Motions

IoU↑
Chamfer↓
(×10−2)

Corres.↓
(×10−1) IoU↑

Chamfer↓
(×10−2)

Corres.↓
(×10−1)

D-FAUST

concat 0.8547 0.0150 0.0883 0.8157 0.0159 0.0864
single CR 0.8543 0.0147 0.0915 0.8221 0.0148 0.0933

dual CR 0.8658 0.0146 0.0871 0.8345 0.0142 0.0886

Deform
Thing4D

concat 0.7735 0.1491 0.3049 0.5693 0.1271 0.3871

single CR 0.7745 0.1560 0.3288 0.5763 0.1356 0.3904

dual CR 0.7892 0.1342 0.2505 0.5821 0.1204 0.3832

related baseline.

Fusion techniques

We experimented our RFNet-4D++ with well-known fusion manners to fuse the spatial and temporal

information in the compositional encoder. Those fusion techniques include concatenation (“concat”)

used in our previous RFNet-4D [268], single cross-attention (“single CR”) [49], and our proposed

dual cross-attention (“dual CR”). Results of this experiment are presented in Table 3.3. We observed

that, the single cross-attention performs on par with or slightly better than the simple concatenation

operation. However, the dual cross-attention clearly and consistently boosts up the performance

on both the datasets and in both the case studies (S1 and S2). This shows the ability of the dual

cross-attention in learning of long-range contextual information.

Variants of RFNet-4D++

We conducted a series of experiments on different variants of our RFNet-4D++. First, we verified

our joint learning of spatio-temporal representations for 4D point cloud reconstruction and flow

estimation by comparing it with the approach tackling these two tasks independently. Second, we

proved the improvement of flow learning in both forward (FW) and backward (BW) directions.

Third, we compared different distance metrics including the Sliced Wasserstein distance (SWD)
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Table 3.4: Ablation study on various settings of our RFNet-4D++ on the D-FAUST dataset. For
each evaluation metric, the best performance is highlighted.

Variant Detailed setting IoU ↑
Chamfer↓ Corres.↓
(×10−3) (×10−2)

Separated tasks
Only temporal flows - - 1.5519

Only spatial points 0.7712 0.5921 -

Learning direction Only FW learning 0.4988 2.4887 3.5868

Flow loss
SWD loss 0.4305 4.4621 4.0711

HD loss 0.7953 0.2103 1.3017

Flow learning Supervised 0.8656 0.0927 0.8125

Full (RFNet-4D++)
Joint learning, FW-BW,

0.8658 0.1462 0.8709
Chamfer loss, unsupervised

loss and the Hausdorff distance (HD) loss for the implementation of the flow loss in Equation 3.2,

and validated our choice, i.e. the Chamfer distance loss. Fourth, we experimented our model in

both unsupervised and supervised fashions for flow estimation though our method is intentionally

designed for unsupervised paradigm.

We summarise all the variants in Table 3.4. Note that, for each variant, only one factor being

investigated was customised while other factors remained unchanged. For the variants using either

temporal or spatial information (see the first two rows in Table 3.4), only the corresponding encoder

and decoder (i.e., spatial/temporal encoder and decoder) were activated while the counterpart

encoder and decoder were frozen. These variants correspond to solving the flow estimation and

reconstruction tasks separately. To experiment our method with supervised learning approach for

flow estimation, we followed the settings used in OFlow [202]. In particular, we used ground-truth

point-to-point correspondences from the training data and ℓ2 distance for the motion loss, i.e.,

replacing the Chamfer distance in Equation 3.2 by ℓ2 distance. Note that, the D-FAUST dataset is

fully annotated with point-to-point correspondences. When training our model using unsupervised

mode, those point-to-point correspondences were not used. Experimental results in Table 3.4 clearly

confirm the design of our RFNet-4D++ in both object reconstruction and flow estimation.
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Figure 3.6: RFNet-4D++ under various spatial/temporal resolutions on both seen (top row) and
unseen (bottom row) individuals test splits on the D-FAUST dataset in both object reconstruction
and flow estimation.

Impact of spatial and temporal resolutions

We tested our method under various spatial and temporal resolutions on both seen and unseen

individuals test splits, and in both reconstruction and flow estimation tasks. For spatial resolutions,

we randomly sampled an input point cloud with 50, 100, 300 (the input used in all experiments),

500, and 1k point trajectories from ground-truth surfaces. For each spatial resolution, like LPDC, we

varied the temporal resolutions by sampling each point cloud sequence in two ways: even sampling

(as used in all experiments) and uneven sampling (where we randomly selected 6 frames with large

variations between adjacent frames from a 50-time step segment). We present the results of this

experiment in Figure 3.6.

The relationship between input point density with the performance of object reconstruction and

flow estimation is clearly shown in Figure 3.6. In general, increasing the number of input points

within the range of 50-300 points leads to improved performance. However, when the input density

exceeds 300 points (which was the case in all experiments), a noticeable drop in performance occurs.

This decline can be attributed to the complexities involved in establishing flow correspondences for

denser point clouds. Despite this decrease, the performance of denser input points still outperforms

sparser input points, indicating their relative advantage even in challenging scenarios. For the

temporal resolution-related experiment, it is worth noting that even or uniformly sampled input

points consistently yield superior performance compared to uneven sampling points. This is likely
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Table 3.5: Variants of LPDC using RFNet-4D++’s components on the D-FAUST dataset. For
each evaluation metric, the best performance is highlighted.

Baseline IoU ↑ Chamfer (×10−3) ↓ Corres. (×10−2) ↓

LPDC-Add 0.8348 0.1865 0.5539
LPDC-Chamfer 0.6231 0.7359 1.3187
LPDC [261] 0.8511 0.1526 0.7803

RFNet-4D [268] 0.8547 0.1504 0.8831
RFNet-4D++ 0.8658 0.1462 0.8709

due to the fact that point locations and flow correspondences can undergo significant changes or

exhibit large variations, making flow estimation more challenging when unevenly distributed points

are used.

Effectiveness of RFNet-4D++’s components

Several components of our proposed RFNet-4D++ are built upon the architecture of LPDC [261],

e.g., the temporal decoder and occupancy decoder. To better understand the effectiveness of these

components, we applied them to customise LPDC as follows: a) LPDC-Add: Like our RFNet-4D++,

we added the features from the temporal decoder as an additional input to the occupancy decoder on

top of LPDC; b) LPDC-Chamfer: we switched the ℓ1 loss used in LPDC to our Chamfer distance

loss. The motivations for integrating the temporal features into the occupancy decoder are as follows.

(i) We hypothesized that jointly addressing two tasks by sharing information between corresponding

decoders can leverage the individual tasks. (ii) As a consequence, the close collaboration of flow

estimation and object reconstruction allows some relaxation of the supervision need. This is realised

by tackling the flow estimation task in an unsupervised manner. In addition, our RFNet-4D++ also

differs from LPDC in the joint prediction of motion and shape. Specifically, although both LPDC

and our method jointly learn spatio-temporal representations for 4D point clouds, LPDC predicts the

motion flows and object shapes in a decoupling way as the LPDC’s decoders work independently.

In contrast, our RF-Net4D++’s decoders collaborate closely by sharing information and thus can

leverage each other. We report the results of this ablation study in Table 3.5.
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Table 3.6: Space and time complexity of our method and existing ones on the D-FAUST dataset.

Method Memory (GB) Training (sec/iter) Inference (sec/seq)

OFlow [202] 3.96 4.65s 0.95s
LPDC [261] 11.90 2.09s 0.44s
RFNet-4D [268] 14.20 1.33s 0.24s
RFNet-4D++ 16.87 1.54s 0.29s

3.4.4 Complexity Analysis

We analysed the memory footprint and computational efficiency of our RFNet-4D++, its previous

version RFNet-4D, and several existing models including OFlow [202] and LPDC [261] (best

performed method other than our RFNet-4D and RFNet-4D++). In this experiment, we trained all

the models with a batch size of 16, using a sequence of 17-time steps with consistent intervals. We

report the memory footprint, training, and inference time of all the methods in Table 3.6. For the

training time, we computed the average of batch training time throughout the first 100k iterations of

training (seconds per iteration). For the inference time, we reported the average time required to

infer using a batch size of 1 for 1k test sequences (seconds per sequence). As shown in Table 3.6,

although our model take a larger memory footprint for training, its training time is approximately 3.5

times and 1.6 times faster than that of OFlow and LPDC respectively. Similarly, our model performs

1.9 times and 4 times faster than OFlow and LPDC in inference. We found that OFlow takes a much

longer time for training since it makes use of an Ordinary Differential Equation solver requiring

intensive computations and gradually increasing the number of iterations to fulfill error tolerance.

3.5 Discussion and Conclusion

This work proposes RFNet-4D++, a network architecture for jointly reconstruction of 3D objects

and estimation of temporal flows from dynamic point clouds. We develop a compositional encoder

effectively capturing informative spatio-temporal representations for 4D point clouds, and devise

a joint learning paradigm leveraging sub-tasks to improve overall performance. We evaluated our

method and compared it with existing works on two benchmark datasets including D-FAUST and

DeformingThing4D datasets. Experimental results demonstratec the effectiveness and efficiency of

our method in comparison with the current state-of-the-art.
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There is also room for future research. First, we found that existing 4D reconstruction methods

often suffer from large displacements between data frames. Second, their reconstruction quality

tends to drop over time due to accumulated errors. It is also worthwhile to study 4D reconstruction

for different types of objects and with more challenging input data types, e.g., LiDAR point clouds

that are commonly used in autonomous driving applications.
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Figure 3.7: Qualitative evaluation of our method and existing methods on the DFAUST dataset.
The first row includes (from left to right): input point cloud, ground truth mesh of entire body, ground
truth mesh of upper/lower body, and ground-truth flows (darker vectors show stronger motions).
Each following row represents corresponding reconstruction and flow estimation results. Severe
errors are highlighted.
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Input LPDC Ours GT

Figure 3.8: Qualitative evaluation of our method and LPDC [261] on the DeformingThing4D-
Animals [156] dataset. Note that only LPDC is showcased here as we found it significantly
outperforms methods other than our RFNet-4D and RFNet-4D++, e.g., PSGN-4D, ONet-4D, OFlow,
4DCR.
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CHAPTER 4

TRANSPARENT AND REFLECTIVE OBJECT
SEGMENTATION

4.1 Introduction

Figure 4.1: Sample cases of the types of transparent objects present around us.

Glass is used extensively to construct opaque and see-through objects, such as windows, vitrines,

bottles, and walls. Segmenting images containing transparent materials might be challenging

because their appearance depends on the surrounding visual background. Some samples of different

transparent objects in real life are shown in Figure 4.1. Most systems used in robotics research [307,

308, 337] rely on sensor fusion techniques involving sonars or lidars, but the methods have often

struggled to detect transparent objects, misinterpreted reflections as actual objects, leading to scan

matching issues. This is because transparent objects present the properties of refraction and reflection,

which throwback light and the appearance of the surrounding areas, so they mislead robot sensors

55



and negatively impact robot navigation, depth estimation, and 3D reconstruction. Hence, visual

systems must deal with reflective surfaces, which would help them accurately identify glass barriers

for effective collision prevention in workplaces, supermarkets, or hotels. Furthermore, in domestic

and professional settings, visual systems should also be able to navigate fragile items such as vases

and glasses. Therefore, a practical, robust, cost-effective, vision-based approach for transparent

object segmentation is essential. However, current semantic segmentation algorithms [306, 348, 323,

24, 331] and even powerful foundation models, such as SAM [132], Semantic SAM [150, 22] were

not designed to address transparent and reflective objects, resulting in decreased performance in the

presence of such objects. It is important to note that the SAM model does not include semantics,

or in other words, it cannot yield masks with semantic information. The SAM model also presents

the challenge of over-segmentation, thereby leading to a higher likelihood of false positives (please

check Section 4.4.6 for more detail).

Recent works on human visual system [127, 237, 236] prove that “humans rely on specular

reflections and boundaries as key indicators of a transparent layer“. In the existing literature

for segmentation, recent methods for segmenting transparent or glass objects have been proposed

with different strategies for better results in dealing with glass objects. These strategies include

focusing on the object’s edges [308, 337, 256], using depth information [256, 239], analyzing

reflections [162], looking at how light polarizes [304, 188], and utilizing the object’s context or

semantic information [164]. However, techniques that rely on polarization, depth, and semantic

information [256, 239, 304, 188, 164] often need special equipment to gather data or a lot of human

work to label the data, which isn’t very efficient. As far as we know, no method has combined both

visual cues of boundary and reflection to improve segmentation performance.

Therefore, we will focus on capturing the two visual cues into the segmentation models: boundary

localization for shape inference and reflections for glass surface recognition. We introduce an efficient

transformer-based architecture tailored for segmenting transparent and reflective objects along with

general objects. Then, our method captures the glass boundaries based on their geometric cues

and the glass reflections based on the appearance cues in an enhanced feature module in our

network. In doing so, we developed a Boundary Feature Enhancement (BFE) module to learn and

integrate glass boundary features that can help the localization and segmentation of the glass-like

regions. We supervise this module by a new boundary loss that utilizes the Sobel kernel to extract

boundaries based on the gradients of the predictions and ground-truth objects’ masks. Then, we
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introduce a Reflection Feature Enhancement (RFE) module, which decomposes reflections into

foreground and background layers, providing the network with additional features to distinguish

between glass-like and non-glass areas. By harnessing the power of transformer-based encoders

and decoders, our framework could capture long-range contextual information, unlike previous

methods, which relied heavily on stacked attention layers [73, 322] or combined CNN backbones

with transformers [308, 348, 289]. These long-range visual cues are essential to reliably identify

transparent objects, especially when they lack distinctive textures or share similar content with their

surroundings [308]. More importantly, we demonstrate that our method is robust to both transparent

object segmentation and generic semantic segmentation tasks, with state-of-the-art performance for

both scenarios across various datasets.

In summary, our contributions are as follows:

• We introduce TransCues, an efficient transformer-based segmentation architecture that seg-

ments both transparent, reflective, and general objects.

• We propose the Boundary Feature Enhancement (BFE) module and boundary loss, improving

the accuracy of glass detection performance.

• We present the Reflection Feature Enhancement (RFE) module, facilitating the differentiation

between glass and non-glass regions.

• We conduct extensive experiments to demonstrate our method’s competitive performance on

diverse tasks, e.g. semantic glass segmentation, glass and mirror segmentation, and generic

semantic segmentation.

4.2 Related Works

This section will discuss recent works for Transparent Object Sensing and Segmentation, Mirror

Segmentation, and Transformer in Semantic Segmentation.

4.2.1 Transparent Object Sensing and Segmentation

In the transparency settings, the color intensities of both glass and their background often match,

making it challenging to differentiate between them. Traditional visual aid systems, enhanced

with ultrasonic sensors and RGB-D cameras, were developed to effectively identify transparent

barriers like glass and windows [110]. On raw images, existing works have explored the use of
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transmission differences [203], reflection cues [162], and polarization [304, 188] for detecting trans-

parency. Moreover, transparency segmentation methods [308, 90, 186] cater to a range of objects

from opaque entities like windows and doors to see-through items such as cups and eyeglasses,

focusing on discerning reflections and their boundaries to detect and define transparent surfaces

accurately. Recently, [308] introduced the Trans10K-v2 dataset, which prompts new research direc-

tions beyond conventional sensor fusion for transparent objects. This includes AdaptiveASPP [15]

for enhanced feature extraction and EBLNet [90] for improved global form representation. Fur-

thermore, Trans4Trans [337] is proposed to provide a lightweight, general network for real-world

applications. Drawing on these innovations, our work aims to create an efficient, robust, transparent

object segmentation solution suitable for general semantic segmentation and practical uses like robot

navigation.

4.2.2 Mirror Segmentation

Closely related to glass segmentation is mirror segmentation, in which recent models have introduced

high-level concepts to improve detection and localization. For precise localization, SANet [84]

utilizes the semantic relationships between mirrors and their surrounding environment. SATNet [106]

capitalizes on the natural symmetry between objects and their mirror reflections to accurately identify

mirror locations. VCNet [258], on the other hand, explores ’visual chirality’—a unique property

of mirror images—and incorporates this through a specialized transformation process for effective

mirror detection. Lastly, HetNet [96] introduces a unique model that combines a contrasted module

for initial mirror localization and a reflection semantic logical module for semantic analysis. Unlike

existing works, we consider mirror segmentation as a subproblem in glass segmentation that our

proposed framework can also address effectively.

4.2.3 Transformer in Semantic Segmentation

Since its introduction in natural language processing, transformers have been adopted and further

investigated for computer vision tasks. One of the pioneers is Vision Transformer (ViT) [56], which

applies transformer layers to sequences of image patches. SETR [348] and Segmenter [251] take

inspiration from ViT and directly add upsampling and segmentation heads to learn long-range

context information from the initial layer. MaX-DeepLab [281], and MaskFormer [32] study

2D image segmentation through the perspective of masked prediction and classification based on
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recent advances of object detection using transformers [16]. As a result, several transformer-based

methods for dense image segmentation have been developed [172, 306]. Pyramid architectures

of vision transformers have been proposed by PVT [289] and SegFormer [306] as a method for

gathering hierarchical feature representations. Both ECANet [322] and CSWin transformer [52]

recommend applying a self-attention mechanism in either vertical or horizontal stripes to gain

advanced simulation capacity while minimizing computing overheads. NAT [87], on the other

hand, aims to simplify the standard attention mechanism, resulting in faster processing and reduced

memory requirements. Recent methods have been trying to match the performance of transformer

models using advanced CNN architectures. MogaNet [155] introduces two feature mixers with

depthwise convolutions, efficiently processing middle-order information across spatial and channel

spaces. InternImage [288] utilizes deformable convolution, providing a large effective receptive field

essential for tasks like detection and segmentation, and offers adaptive spatial aggregation based

on input and task specifics. Collectively, these approaches signify a shift towards more efficient,

task-tailored CNN models that strive to replicate the success of transformers in various computer

vision applications.

4.3 Our Proposed Method

4.3.1 Preliminary

Given an RGB image, represented as I ∈ RH×W×3, where H and W respectively denote the image

height and width, glass segmentation aims to segment this image into semantic labels at each pixel,

which can be expressed as F ∈ RH×W×nclass , where nclass represents the number of classes. While

glass segmentation can be typically defined in the binary space, defining it along with glass, mirror,

and general non-glass objects makes for a semantic segmentation problem.

Existing works have not considered boundary and reflective cues in the same framework. In

particular, while boundary or edge information was deemed to be captured in [307, 188, 256] for

glass segmentation, the reflective information of glass objects was not considered of high priority

because of negligible reflections in the datasets. Meanwhile, mirror segmentation has been chiefly

analyzed regarding symmetric reflection to detect the mirroring in the image [324, 163, 96, 106].
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Figure 4.2: Overview of our TransCues method. An RGB image is processed by four FEM
modules in the encoder for multi-scale feature extraction. These features are then refined by the
decoder’s FPM, BFE, and RFE modules, culminating in semantic labels via an MLP. Our main
contributions, BFE and RFE modules, are elaborated in Section 4.3.3 and Section 4.3.4.

4.3.2 TransCues: Revealing Transparency via Edge and Reflection

As depicted in Figure 4.2, our network aims to segment glasses in an image into their corresponding

labels at each pixel. To handle variations in input image sizes across datasets, we standardize

the resolution to either 512 × 512 or 768 × 768, ensuring consistent position embedding dimen-

sions throughout both training and testing phases. Our network’s architecture adheres to the

well-established encoder-decoder structure, comprising the Feature Extraction Module (FEM),

Feature Parsing Module (FPM), Boundary Feature Enhancement (BFE), and Reflection Feature

Enhancement (RFE) modules. Precisely, the FEM module, based on the PVT architecture [289, 290]

in the encoder, efficiently captures multi-scale long-range dependency features from the input image.

Drawing inspiration from [337], the FPM module offers a lightweight alternative to the FEM module,

capturing detailed to abstract representations of transparent objects across C1 to C4. The detail of

FEM and FPM can be found in Figure 4.3.

To enrich the feature learning capabilities of our network, we propose to capture the glass

boundaries by a geometric cue (BFE module) and the glass reflections based on an appearance

cue (RFE module) to differentiate glass from non-glass regions. Boundaries often present as

high-contrast edges around transparent objects, a characteristic that aligns well with human visual
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Figure 4.3: The architecture of the Feature Extraction Module (top) in our encoder and Feature
Parsing Module (bottom) in our decoder. Zoom in for better visualization.

perception. In detail, we employ the BFE module to amplify the boundary characteristics inherent

in transparent features. This enhancement of boundary cues facilitates more accurate segmentation

of transparent objects.

On the other hand, reflections on glass surfaces may not always be prominent, making them a

challenge in designing glass segmentation. Following this, we feed the boundary-enhanced features

into the RFE module. This step is crucial because while most transparent objects exhibit reflections,

not all reflective objects are transparent. The RFE module thus plays a pivotal role in distinguishing

between these two categories. These cues enhance our network’s ability to capture fine details and

long-range contextual information for transparent features.

Consequently, as image data progresses through our decoder, it integrates contextual information

of varying resolutions, preserving the fine-grained information of transparent and reflective features.

By systematically addressing both boundary and reflection cues, our network achieves a nuanced

and effective approach to segmenting these challenging object types. Finally, a compact MLP layer

is employed to predict semantic labels for each pixel. As shown in Figure 4.4, throughout each stage

in the encoder and the boundary and reflection modules, our feature maps show that the glass region,

including its defining boundary and reflection, is clearly distinguishable from non-glass surfaces.

The following sections will discuss more details of the BFE and RFE modules.
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Figure 4.4: Visualization of feature maps of our method. Zoom in for better visualization.

4.3.3 Boundary Feature Enhancement Module

Inspired by human perception, incorporating boundary information can significantly benefit seg-

mentation and localization tasks involving glass recognition [90, 186]. To implement this concept,

the BFE module is based on ASPP module [24, 186], yet more specialized towards identifying

and integrating boundary characteristics of glass into our transformer architecture. Contrary to the

approach in [307], which uses an extra boundary stream (an encoder-decoder branch) for boundary

feature extraction and integration with primary stream features, our BFE module is more streamlined.

It derives boundary features directly from the targeted input features, bypassing the necessity for an

additional stream. As shown in Figure 4.2, the BFE module is designed to enhance feature learning

before the last layer of our decoder so that the reflection module can subsequently improve the

features in the next step. We empirically found that this placement of the BFE module has better

performance and reduced memory usage compared to the placement of BFE at earlier decoder layers

(please check Section 4.4.5 for more detail).

The BFE begins by taking input features X0. These features are then processed through four

parallel blocks, each dedicated to extracting multi-scale boundary features Fi(.) for i = 1, 2, 3, 4, 5.

Within each block, a convolution layer (C(.)) with different kernels and paddings is followed

by batch normalization (BN(.)) and ReLU activation (ReLU(.)) operations, resulting in Fi =

ReLU(BN(C(X))). These multi-scale boundary features are subsequently fused using the Fusion

module (Ffuse = C(F1 +F2 +F3 +F4 +F5)), effectively aggregating shape properties and forming

the glass boundary features. The output of the Fusion module then undergoes a convolutional layer

to predict the boundary map, supervised by the Boundary loss. Finally, the enhanced boundary

features Xe are obtained by aggregating the output of the Fusion module with the input features to
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precisely locate glass regions, especially their boundaries, as expressed by the following equation:

Xe = (Ffuse(Fi(X)) + 1)×X0 (4.1)

where + and × denote element-wise addition and multiplication, respectively.

Boundary loss. The Sobel kernel, sometimes called the Sobel-Feldman filter, is widely used in

image processing and computer vision, mainly for edge detection. It highlights image boundaries by

analyzing the 2D gradient and emphasizing high spatial frequency regions. Our Boundary loss (Lb)

leverages the Sobel filter to measure how closely the gradients of a predicted mask match those of

the ground truth mask, employing the Dice loss [195]:

Lb = dice(∇xM̂⊕∇yM̂,∇xMGT ⊕∇yMGT ) (4.2)

where M̂ is predicted object mask and MGT is ground truth object mask. ∇x and ∇y denote the

gradient along x-axis and y-axis computed by the Sobel filter. ⊕ represents the combination of the

gradient maps into a single feature map. In our implementation, we define the combination ⊕ by:

a⊕ b = max
(

1
2
(a+ b), τ

)
(4.3)

where τ is set to 0.01 to reduce noise in the gradient maps.

4.3.4 Reflection Feature Enhancement Module

To enhance the recognition of glass surfaces, we introduce the Reflection Feature Enhancement

(RFE) module, capitalizing on the high reflectivity of glass when illuminated by light. These

reflections provide valuable cues for recognizing glass surfaces in images [324, 187]. Note that if

the reflection on the glass surface exhibits insufficient strength (poor or weak) to be discerned by

our RFE module, our model may encounter challenges in accurately detecting the glass surface.

In this scenario, correctly identifying glass surfaces poses a challenge, even for humans. Please

check Section 4.4.6 for discussion and analysis on the need of the RFE module.

In our design, the RFE module is placed after the last layer of the decoder, after the boundary

feature enhancement module (please check Section 4.4.5 for more detail). The RFE module employs

a sophisticated convolution-deconvolution architecture [327], which takes input features Y and

produces an enhanced feature map Ye. This architecture allows the module to capture and process

63



information at multiple levels of abstraction, which is essential for handling complex visual cues

like reflections. Unlike the other reflection removal model [339, 53, 249] that primarily addresses

global reflections (assuming the entire input image is covered by glass), our RFE module targets

detecting local reflections to locate glass surfaces.

In detail, the encoder network E is responsible for extracting relevant features from the input. It

consists of five blocks, each composed of a convolutional layer followed by batch normalization,

ReLU activation, and either a Max-Pooling Pmax(.) or Upsampling layer Pup(.). Each encoder

block can be defined as follows:

Ei = Pi (ReLU (BN (C(Ei−1)))) , i ∈ [1..5] (4.4)

where E0 = C(Y), Pi is the Max-Pooling or Upsampling layer and when i = 5, Pi will be PUp(.)

instead of Pmax(·).

Consequently, the decoder network D works in conjunction with the encoder to reconstruct and

enhance the features. It also comprises four blocks, interconnected by an Upsampling layer Pup(.)

or a Deconvolutional layer DC(·), along with batch normalization and ReLU activation. Notably,

the output of the preceding decoder block and the corresponding feature map ei = Ei from the

encoder block are concatenated before being fed into the subsequent decoder block. This facilitates

the seamless flow of information across the network, enhancing its ability to capture and retain

essential features of the reflective areas. Each decoder block can be formulated as follows:

Dj = Pj(ReLU(BN(DC(Dj−1 ⊗ E5−j)))), j ∈ [1..4] (4.5)

where D0 = E5, Pj is the Upsampling or Deconvolutional layer and when j = 4, Pj will be DC(·)

instead of PUp(·).

The output of the decoder network is split into two tensors: the first tensor represents reflection

mask Mrf, utilized for optimizing the reflection loss, while the second tensor contains the enhanced

reflective features Ye, which have been processed to capture and emphasize reflection-related

information.
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4.3.5 Loss Functions

We use the softmax cross-entropy loss as our semantic loss Ls for supervising the semantic mask

prediction and the ground truth semantic mask. Our loss for semantic mask prediction is:

Ls = ce(M̂,MGT ) (4.6)

where ce(.) is the softmax cross-entropy loss.

To supervise reflection, we also use the softmax cross-entropy loss for our reflection loss Lr.

However, there is no ground truth for the reflection mask, and we assume pseudo ground truth for

the reflection mask to span common categories with reflective appearance such as window, door, cup,

bottle, etc. Therefore, we extract pseudo ground truth with the reflective appearance in the ground

truth semantic map MGT . Note that as our pseudo ground truth might contain opaque appearances,

we empirically found that such noise is not severe enough to affect the performance of the RFE

module negatively. The reflection loss is:

Lr = ce(Mrf,ϕ(MGT )) (4.7)

where ϕ(.) is a function to extract pseudo ground truth with the reflective appearance in the ground

truth semantic map MGT .

The total loss for our training is:

L = αLs +βLb + γLr (4.8)

where α, β and γ are hyper-parameters and are empirically set as [1.0,0.1,0.1] according to the

experimental results.

4.4 Experiments

4.4.1 Datasets

We comprehensively evaluated our proposed method on diverse datasets to demonstrate its excep-

tional performance and versatility. These datasets encompass a broad spectrum of segmentation tasks

such as Glass (Transparent) datasets (Trans10k-v2 [308], RGBP-Glass [188], and GSD-S [164]),

Mirror (Reflection) datasets (MSD [324], PMD [163], and RGBD-Mirror [187]), and generic
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Table 4.1: Comparison between different datasets in our experiments. “P”, “D”, and “S” mean
polarization images, depth images, and semantic maps, respectively. Note that our method
uses only RGB images as input for both training and testing.

Dataset Modalities No. of Images Tasks Types FOV Position

Glass
Trans10k-v2 [308] RGB 10,428 semantic both both random
RGBP-Glass [188] RGB-P 4,511 binary transparent far random
GSD-S [164] RGB-S 3,009 binary transparent far random

Mirror
MSD [324] RGB 4,018 binary reflective both center
PMD [163] RGB 6,461 binary reflective both random
RGBD-Mirror [187] RGB-D 3,049 binary reflective both center

Generic
TROSD [256] RGB-D 11,060 semantic both near center
Stanford2D3D [3] RGB-D 70,496 semantic both far random

datasets, which consists of both glass and mirror objects (TROSD [256], and Stanford2D3D [3]),

ranging from binary to semantic segmentation, with a particular focus on images featuring reflective,

transparent, or both characteristics. Our evaluation also considers the varied positions and fields

of view (FOV) of objects within the images. Objects of interest may appear near or far from the

camera’s perspective, positioned randomly or at the center of the frame, providing a rich and realistic

testing environment. Furthermore, the datasets we utilized are substantial in size, ensuring coverage

of a broad range of environmental and scenario complexities. This encompasses indoor and outdoor

scenarios, as well as varying lighting conditions, diverse object scales, different viewpoints, and

levels of occlusion. Our extensive evaluation showcases the robustness and adaptability of our

method across a wide array of real-world conditions. The detail of each dataset is shown in Table 4.1.

4.4.2 Implementation Details

We implemented our method in PyTorch 1.8.0 and CUDA 11.2. We adopted AdamW optimizer

[177] where the learning rate γ was set to 10−4 with epsilon 10−8 and weight decay 10−4. Our

model was trained with a batch size of 8 and on a single NVIDIA RTX 3090 GPU, but it still can

be trained on an older 2080 Ti or 1080 Ti GPU with a smaller batch size, e.g., 4. We evaluated

all the variants of our network on the validation set for every epoch during the training process.

We used the best model of each variant on the validation set to evaluate the variant on the test set.

The training process was completed once there were no further improvements achieved. We use
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Output Size Layer Name PVT-Tiny PVT-Small PVT-Medium PVT-Large

Stage 1 H
4 × W

4

Patch Embedding P1 = 4; C1 = 64

Transformer
Encoder

 R1 = 8
N1 = 1
E1 = 8

× 2

 R1 = 8
N1 = 1
E1 = 8

× 3

 R1 = 8
N1 = 1
E1 = 8

× 3

 R1 = 8
N1 = 1
E1 = 8

× 3

Stage 2 H
8 × W

8

Patch Embedding P2 = 2; C2 = 128

Transformer
Encoder

 R2 = 4
N2 = 2
E2 = 8

× 2

 R2 = 4
N2 = 2
E2 = 8

× 3

 R2 = 4
N2 = 2
E2 = 8

× 3

 R2 = 4
N2 = 2
E2 = 8

× 8

Stage 3 H
16 × W

16

Patch Embedding P3 = 2; C3 = 320

Transformer
Encoder

 R3 = 2
N3 = 5
E3 = 4

× 2

 R3 = 2
N3 = 5
E3 = 4

× 6

 R3 = 2
N3 = 5
E3 = 4

× 18

 R3 = 2
N3 = 5
E3 = 4

× 27

Stage 4 H
32 × W

32

Patch Embedding P4 = 2; C4=512

Transformer
Encoder

 R4 = 1
N4 = 8
E4 = 4

× 2

 R4 = 1
N4 = 8
E4 = 4

× 3

 R4 = 1
N4 = 8
E4 = 4

× 3

 R4 = 1
N4 = 8
E4 = 4

× 3

Table 4.2: Detailed settings of PVTv1 series which is adopted from [289].

mean Intersection over Union (mIoU) as the main evaluation metric to measure the segmentation

performance.

The hyper-parameters of backbones in our models are listed as follows:

• Si: stride of overlapping patch embedding in Stage i;

• Ci: channel number of output of Stage i;

• Li: number of encoder layers in Stage i;

• Ri: reduction ratio of SRA layer in Stage i;

• Pi: patch size of Stage i;

• Ni: head number of Efficient Self-Attention in Stage i;

• Ei: expansion ratio of Feed-Forward layer [277] in Stage i;

In addition, we describe a series of PVTv1 [289] backbones with different scales (Tiny, Small,

Medium, and Large) in Table 4.2 and a series of PVTv2 [290] backbones with different scales (B1

to B5) in Table 4.3.
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Output Size Layer Name PVT-B1 PVT-B2 PVT-B3 PVT-B4 PVT-B5

Stage 1 H
4 × W

4

Overlapping
Patch Embedding

S1 = 4
C1 = 64

Transformer
Encoder

R1 = 8
N1 = 1
E1 = 8
L1 = 2

R1 = 8
N1 = 1
E1 = 8
L1 = 3

R1 = 8
N1 = 1
E1 = 8
L1 = 3

R1 = 8
N1 = 1
E1 = 8
L1 = 3

R1 = 8
N1 = 1
E1 = 4
L1 = 3

Stage 2 H
8 × W

8

Overlapping
Patch Embedding

S2 = 2
C2 = 128

Transformer
Encoder

R2 = 4
N2 = 2
E2 = 8
L2 = 2

R2 = 4
N2 = 2
E2 = 8
L2 = 3

R2 = 4
N2 = 2
E2 = 8
L2 = 3

R2 = 4
N2 = 2
E2 = 8
L2 = 8

R2 = 4
N2 = 2
E2 = 4
L2 = 6

Stage 3 H
16 × W

16

Overlapping
Patch Embedding

S3 = 2
C3 = 320

Transformer
Encoder

R3 = 2
N3 = 5
E3 = 4
L3 = 2

R3 = 2
N3 = 5
E3 = 4
L3 = 6

R3 = 2
N3 = 5
E3 = 4
L3 = 18

R3 = 2
N3 = 5
E3 = 4
L3 = 27

R3 = 2
N3 = 5
E3 = 4
L3 = 40

Stage 4 H
32 × W

32

Overlapping
Patch Embedding

S4 = 2
C4 = 512

Transformer
Encoder

R4 = 1
N4 = 8
E4 = 4
L4 = 2

R4 = 1
N4 = 8
E4 = 4
L4 = 3

R4 = 1
N4 = 8
E4 = 4
L4 = 3

R4 = 1
N4 = 8
E4 = 4
L4 = 3

R4 = 1
N4 = 8
E4 = 4
L4 = 3

Table 4.3: Detailed settings of PVTv2 series which is adopted from [290].

4.4.3 Evaluation metrics.

For our evaluation, we adopt four widely used metrics from [188] for quantitatively assessing the

glass segmentation performance: mean intersection over union (mIoU), weighted F-measure (Fwβ ),

mean absolute error (MAE), and balance error rate (BER).

Intersection over Union (IoU) is a widely used metric in segmentation tasks, which is defined as:

IoU =

H∑
i=1

W∑
j=1

(G(i, j) ∗ Pb(i, j))

H∑
i=1

W∑
j=1

(G(i, j) + Pb(i, j) −G(i, j) ∗ Pb(i, j))
(4.9)

where G is the ground truth mask in which the values of the glass region are 1 while those of the

non-glass region are 0; Pb is the predicted mask binarized with a threshold of 0.5; and H and W are

the height and width of the ground truth mask, respectively.

68



Weighted F-measure (Fwβ ) is adopted from the salient object detection tasks with β = 0.3. F-

measure (Fβ) is a measure of both the precision and recall of the prediction map. Recent studies [61]

have suggested that the weighted F-measure (Fwβ ) [184] can provide more reliable evaluation results

than the traditional Fβ. Thus, we report Fwβ in the comparison.

Mean Absolute Error (MAE) is widely used in foreground-background segmentation tasks, which

calculates the element-wise difference between the prediction map P and the ground truth mask G :

MAE =
1

H×W

H∑
i=1

W∑
j=1

|P(i, j) −G(i, j)|, (4.10)

where P(i, j) indicates the predicted probability score at location (i, j).

Balance Error Rate (BER) is a standard metric used in shadow detection tasks, defined as:

BER = (1 −
1
2
(
TP

Np
+

TN

Nn
))× 100 (4.11)

where TP, TN,Np, and Nn represent the numbers of true positive pixels, true negative pixels, glass

pixels, and non-glass pixels, respectively.

4.4.4 Qualitative and Quantitative Results

We evaluated the performance of our method across three distinct tasks: glass segmentation, mirror

segmentation, and generic segmentation. To ensure fair comparisons, we have carefully selected our

model variants (Ours-X with X is postfixes: -T, -S, -M, -L, -B1, -B2, -B3, -B4, and -B5, represented

the size of the model as PVTv1 Tiny, Small, Medium, Large, and PVTv2 B1-5, respectively) that

have similar model’s size or complexity used by other methods, as indicated in the respective

tables. The experimental results show that our method consistently outperforms other state-of-the-art

methods across all datasets as shown in Figure 4.5.

Comparison on Glass Object Segmentation

We benchmarked our method against recent glass segmentation methods on binary (RGBP-Glass

and GSD-S dataset) and semantic segmentation (Trans10K-v2 dataset) tasks.

69



Figure 4.5: Quantitative performance of our proposed method with previous SOTAs on different
datasets. Our method achieves competitive performance over previous methods on both glass, mirror,
and generic segmentation tasks. To maintain fairness, we only compare with methods that using the
same input (using only RGB image).

RGBP-Glass dataset. We extensively compare the effectiveness of our method with state-of-the-

art methods, as shown in Table 4.4. All methods are retrained on RGBP-Glass dataset [188] for a

fair comparison. EAFNet [304], Polarized Mask R-CNN (P.M. R-CNN) [121], and PGSNet [188]

are the three methods that leverage polarization cues. SETR [348], SegFormer [306] are the two

methods focusing on general semantic/instance segmentation tasks. GDNet [189], TransLab [307],

Trans2Seg [308], and GSD [162] and our method are in-the-wild glass segmentation methods but

only rely on RGB input. From Figure 4.6, we can see that our method outperforms all other methods.

It should be noted that our method even outperforms previous works that utilize additional input

signals such as polarization cues [304, 121, 188] while being efficient.
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Table 4.4: Quantitative comparison against state-of-the-art on RGB-P dataset [188]. Note that: we
only use RGB as input for our method, and the results are sorted by ascending of GFLOPS. (∗)
denotes the glass segmentation methods with additional polarization images as input.

Method Backbone GFLOPs ↓ mIoU ↑ Fwβ ↑ MAE ↓ BER ↓

EAFNet [304] ∗ ResNet-18 18.93 53.86 0.611 0.237 24.65
P.M. R-CNN [121] ∗ ResNet-101 56.59 66.03 0.714 0.178 18.92
PGSNet [188] ∗ Conformer-B 290.62 81.08 0.842 0.091 9.63

Trans2Seg [308] ResNet-50 49.03 75.21 0.799 0.122 13.23
TransLab [307] ResNet-50 61.26 73.59 0.772 0.148 15.73
SegFormer [306] MiT-B5 70.24 78.42 0.815 0.121 13.03
GSD [162] ResNeXt-101 92.69 78.11 0.806 0.122 12.61
Ours-B5 PVTv2-B5 154.37 82.77 0.879 0.042 9.59
PGSNet [188] Conformer-B - 76.11 0.797 0.126 13.08
GDNet [189] ResNeXt-101 271.53 77.64 0.807 0.119 11.79
SETR [348] ViT-Large 240.11 77.60 0.817 0.114 11.46

Input GTOursPGSNet *GSD P Mask R-CNN

Figure 4.6: Qualitative comparison of our method with other methods on RGB-P dataset [188]. (∗)
denotes the glass segmentation method with additional polarization images as input.

GSD-S dataset. We compare our method with other recent methods in Table 4.5 and Fig-

ure 4.7, includes generic semantic segmentation methods (PSPNet [344], DeepLabV3+ [24],

PSANet [345], DANet [73]), recent state-of-the-art models that utilize transformer technique

(SETR [348], Swin [172], SegFormer [306], Twins [39]), and glass surface detection methods

(GDNet [189], GSD [162], GlassSemNet [164]). For a fair comparison, all methods are retrained

on the GSD-S dataset [164]. Our method outperforms all other methods and achieves compar-

ative performance with GlassSemNet [164], which has additional semantic context information.

GlassSemNet [164] points out that humans frequently use the semantic context of their surroundings
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Table 4.5: Evaluation results on GSD-S dataset [164]. Note that: we only use RGB as input for our
method. (†) denotes the glass segmentation method with additional semantic context information
and post-processing refinement.

Method mIoU ↑ Fwβ ↑ MAE ↓ BER ↓

PSPNet [344] 56.1 0.679 0.093 13.41
DeepLabV3+ [24] 55.7 0.671 0.100 13.11
PSANet [345] 55.1 0.656 0.104 12.61
DANet [73] 54.3 0.673 0.098 14.78
SCA-SOD [245] 55.8 0.689 0.087 15.03

SETR [348] 56.7 0.679 0.086 13.25
Segmenter [251] 53.6 0.645 0.101 14.02
Swin [172] 59.6 0.702 0.082 11.34
Tokens-to-Token ViT [330] 56.2 0.693 0.087 14.72
SegFormer [306] 54.7 0.683 0.094 15.15
Twins [39] 59.1 0.703 0.084 12.43

GDNet [189] 52.9 0.642 0.101 18.17
GSD [162] 72.1 0.821 0.061 10.02
Ours-B5 75.2 0.859 0.046 9.04
GlassSemNet [164] † 75.3 0.860 0.035 9.26

Input GDNet GSD GlassSemNet † Ours GT

Figure 4.7: Qualitative comparison of our method with other methods on GSD-S dataset [164]. (†)
denotes the glass segmentation method with semantic context and post-processing refinement.

to reason, as this provides information about the types of things to be found and how close they might

be to one another. For instance, glass windows are more likely to be found close to other semantically

related objects (walls and curtains) than to things (cars and trees). So, their method utilizes semantic

context information as additional input to progressively learn the contextual correlations among

objects spatially and semantically, boosting their performance. Then, their predictions are refined by
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Ground TruthInput Trans2Seg-M Trans4Trans-M Ours-B3 Ground TruthInput Trans2Seg-M Trans4Trans-M Ours-B3

Figure 4.8: Qualitative comparison of our method and existing methods on Trans10K-v2 [308]. For
a fair comparison, we used Ours-B3, which has the same network size as other methods (-M model).

Fully Connected Conditional Random Fields (CRF) [136] to improve their performance further.

Trans10k-v2 dataset. Shifting our focus to the semantic glass segmentation task, where the

challenge extends beyond merely detecting glass areas to classifying them into 11 fine-grained

categories, our method still reigns supreme, as shown in Table 4.6. The results in Figure 4.8 also

confirm that our method achieves higher segmentation quality with better transparent features, e.g.,

segmentation of two overlapping doors is accurately obtained. These comprehensive evaluations

underscore the effectiveness of our approach across diverse glass segmentation scenarios, affirming

its position as a top-performing and computationally efficient choice for these tasks.

Comparison on Binary Mirror Segmentation

MSD and PMD datasets. We compare quantitative results of the state-of-the-art methods and

our method on MSD and PMD datasets, including four RGB salient object detection methods

CPDNet [302], MINet [206], LDF [296], and VST [169], and five mirror detection methods

MirrorNet [324], PMDNet [163], SANet [84], VCNet [258], SATNet [106]. As shown in Table 4.7,

our method achieves the best performance in terms of all the evaluation metrics. Significantly, we

outperform the second-best method by 5.63% on the MSD dataset.
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Table 4.6: Quantitative evaluation of our method and existing methods on the Trans10K-v2
dataset [308]. Note that: the results are sorting by ascending of GFLOPS.

Method GFLOPs ↓ MParams ↓ ACC ↑ mIoU ↑

DFANet [151] 1.02 - 85.15 42.54
HRNet_w18 [283] 4.20 1.53 89.58 54.25
HarDNet [20] 4.42 - 90.19 56.19
LEDNet [292] 6.23 - 86.07 46.40
Trans4Trans-T [337] 10.45 - 93.23 68.63
Ours-T 10.50 12.72 93.52 69.53
ICNet [343] 10.64 8.46 78.23 23.39

BiSeNet [326] 19.91 13.3 89.13 58.40
Trans4Trans-S [337] 19.92 - 94.57 74.15
Ours-S 20.00 23.98 94.83 75.32
Ours-B1 21.29 14.87 95.37 77.05

Trans4Trans-M [337] 34.38 - 95.01 75.14
Ours-M 34.51 43.70 95.08 76.06
DenseASPP [323] 36.20 29.09 90.86 63.01
Ours-B2 37.03 27.59 95.92 79.29
DeepLabv3+ [24] 37.98 28.74 92.75 68.87
FCN [174] 42.23 34.99 91.65 62.75
OCNet [331] 43.31 - 92.03 66.31
RefineNet [161] 44.56 29.36 87.99 58.18
Trans2Seg [308] 49.03 56.20 94.14 72.15
Ours-L 50.54 60.86 95.28 77.35

TransLab [307] 61.31 42.19 92.67 69.00
Ours-B3 68.35 51.21 96.28 80.04
Ours-B4 79.34 67.11 96.59 80.99

U-Net [232] 124.55 13.39 81.90 29.23
DUNet [119] 123.69 - 90.67 59.01
Ours-B5 154.37 106.19 96.93 81.37
DANet [73] 198.00 - 92.70 68.81
PSPNet [344] 187.03 50.99 92.47 68.23

RGBD-Mirror dataset. Our method is also compared with seven RGB-D salient object detec-

tion methods such as HDFNet [205], S2MA [168], JL-DCF [74], DANet [73], BBSNet [68] and

VST [169], and four mirror detection methods, including PDNet [187], SANet [84], VCNet [258],

and PDNet [187] on the RGBD-Mirror dataset. Our method outperforms all the competing meth-

ods, even though we do not use depth information, which is shown in Table 4.8. We show the
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Table 4.7: Quantitative results of our method with the state-of-the-art methods on Salient Object
Detection and Mirror Detection on MSD and PMD datasets.

Method
MSD PMD

IoU ↑ Fwβ ↑ MAE ↓ IoU ↑ Fwβ ↑ MAE ↓

Salient Object
Detection

CPDNet [302] 57.58 0.743 0.115 60.04 0.733 0.041
MINet [206] 66.39 0.823 0.087 60.83 0.798 0.037
LDF [296] 72.88 0.843 0.068 63.31 0.796 0.037
VST [169] 79.09 0.867 0.052 59.06 0.769 0.035

Mirror
Detection

MirrorNet [324] 78.88 0.856 0.066 58.51 0.741 0.043
PMDNet [163] 81.54 0.892 0.047 66.05 0.792 0.032
SANet [84] 79.85 0.879 0.054 66.84 0.837 0.032
VCNet [258] 80.08 0.898 0.044 64.02 0.815 0.028
SATNet [106] 85.41 0.922 0.033 69.38 0.847 0.025

Ours-B3 91.04 0.953 0.028 69.61 0.853 0.021

Table 4.8: Quantitative results of the state-of-the-art methods on RGBD-Mirror dataset.

Method Input IoU ↑ Fw
fi ↑ MAE ↓

Salient Object
Detection

HDFNet [205] RGB-D 44.73 0.733 0.093
S2MA [168] RGB-D 60.87 0.781 0.070
DANet [73] RGB-D 67.81 0.835 0.060
JL-DCF [74] RGB-D 69.65 0.844 0.056
VST [169] RGB-D 70.20 0.851 0.052
BBSNet [68] RGB-D 74.33 0.868 0.046
PDNet [187] RGB-D 77.77 0.878 0.041

Mirror
Detection

VCNet [258] RGB 73.01 0.849 0.052
PDNet [187] RGB 73.57 0.851 0.053
SANet [84] RGB 74.99 0.873 0.048
SATNet [106] RGB 78.42 0.906 0.031

Ours-B3 RGB 88.52 0.954 0.027

visualization of all three mirror datasets in Figure 4.9.

Comparison on Generic Segmentation

Stanford2D3D dataset. As shown in Table 4.9, we show comparisons with other methods in

different sizes of backbones. Our method outperforms other existing works by about 10.1% better
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Figure 4.9: Qualitative comparison of our method with other methods on MSD, PMD, and RGBD-
Mirror datasets.

performance in mIOU, which highlights the segmentation capacity of our network on the general

scene where there is a presence of glass objects.
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Table 4.9: Comparison with SOTAs on Stanford2D3D dataset. Note that: the results are sorting by
ascending of GFLOPS.

Method GFLOPs ↓ MParams ↓ mIoU ↑

PVT-T [289] 10.16 13.11 41.00
Trans4Trans-T [337] 10.45 12.71 41.28
Ours-T 10.50 12.72 47.11
Trans2Seg-T [308] 16.96 17.87 42.07
Ours-B1 21.99 14.87 51.55

PVT-S [289] 19.58 24.36 41.89
Trans4Trans-S [337] 19.92 23.95 44.47
Ours-S 20.00 23.98 50.17
Trans2Seg-S [308] 30.26 27.98 42.91
Ours-B2 37.03 27.59 53.98

Trans4Trans-M [337] 34.38 43.65 45.73
Ours-M 34.51 43.70 52.57
Trans2Seg-M [308] 40.98 30.53 43.83
PVT-M [289] 49.00 56.20 42.49
Ours-B3 68.35 51.21 54.66

Ours-L 50.54 60.86 53.75
Ours-B4 79.34 67.11 55.21

Ours-B5 154.37 106.19 55.83

TROSD dataset. We compared our method with SOTAs on the TROSD dataset [256] - a specific

dataset for transparent and reflective objects. Table 4.10 provides an overview of our competitors

and highlights their best results, achieved using their publicly available source codes. All methods

utilized the same data augmentation strategy. The visualization is shown in Figure 4.10.

ADE20k and Cityscapes datasets. We conducted additional experiments on ADE20K and

CityScapes datasets, with the results (mIoU) shown in Table 4.11 and sorted by ascending or-

der of GFLOPs (512× 512). As can be seen, our method performs well on both datasets, with mIoU

47.5% on ADE20K and 81.9% on CityScapes.

Failure Cases. Figure 4.11–left showcases failure cases of our method and other methods on

Trans10K-v2. Our method would confuse and fail to segment the object with similar properties

as others. In such a scenario, even human beings would struggle to differentiate between these

transparent things. However, despite assigning the wrong label, our method can still maintain
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Table 4.10: Performance comparison of different methods on TROSD. R: reflective objects. T:
transparent objects. B: background.

Method Input
IOU ↑

mloU ↑ mAcc ↑
R T B

RefineNet [161] RGB 21.32 37.32 92.37 50.34 63.59
ANNNet [360] RGB 22.31 41.30 93.43 52.35 62.49
Trans4Trans [337] RGB 27.69 39.22 94.16 53.69 61.82
PSPNet [344] RGB 26.35 44.38 94.19 54.97 64.14
OCNet [331] RGB 31.76 46.52 95.05 57.78 64.46
TransLab [307] RGB 42.57 50.72 96.01 63.11 68.72
DANet [73] RGB 42.76 54.39 95.88 64.34 70.95
TROSNet [256] RGB 48.75 48.56 95.49 64.26 75.93
Ours RGB 66.16 66.83 97.71 76.90 87.62

SSMA [276] RGB-D 24.70 29.04 89.98 47.91 67.72
FRNet [358] RGB-D 28.37 36.59 92.18 52.38 63.94
EMSANet [239] RGB-D 27.53 44.10 96.14 55.92 71.63
FuseNet [88] RGB-D 37.30 43.29 94.97 58.52 66.13
RedNet [118] RGB-D 48.27 47.57 95.76 63.87 69.23
EBLNet [90] RGB-D 51.75 50.12 94.57 65.49 67.39
TROSNet [256] RGB-D 62.27 57.23 96.52 72.01 81.21

Table 4.11: Comparison (mIoU ↑) with SOTAs on ADE20k and Cityscapes datasets.

Method GFLOPs↓ MParams↓ Backbone ADE20K CityScapes

Trans4Trans-M [290] 41.9 49.6 PVTv2-B3 - 69.3
Semantic FPN [337] 62.4 49.0 PVTv2-B3 47.3 -
Ours-B3 68.3 51.2 PVTv2-B3 47.5 81.9
MogaNet-S [155] 189 29.0 SemFPN 47.7 -
NAT-Mini [87] 900 50.0 UPerNet 46.4 -
InternImage-T [288] 944 59.0 UPerNet 47.9 82.5

the object’s shape. We also show several failure instances (Figure 4.11–right) in our system that

misinterpret non-glass areas as glass because they seem and behave the same, such as still in the

door frame with reflection and distortion.

4.4.5 Ablation studies

In this section, we present ablation studies to verify different aspects of the design of our model and

underscore the significance of each module within our model. Any alterations or omissions to the
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Figure 4.10: Qualitative comparison of our method with other methods on the TROSD dataset.

Ground TruthInput Trans2Seg Trans4Trans Ours Ground TruthInput Ours

Figure 4.11: Failure cases of our method and existing methods on the Trans10K-v2 dataset.

proposed design led to noticeable drops in performance, which justifies our choice of transformer

architecture and the boundary and reflection feature learning components.

Different combinations of network architecture. Table 4.12 presents the comparisons between

various combinations of encoders and decoders, such as using only CNN architecture, using a

combination of both CNN and Transformer, and using a fully transformer-based model. Our method,

an encoder-decoder transformer-based model, outperforms other competitive networks, indicating

the system’s capability for effectively segmenting transparent objects. In this ablation study, we

used Ours-M and Ours-B2 (not the best model Ours-B5), which has the same network size as other

methods (-M model size), for a fair comparison.

Analysis of different backbones. We have conducted experiments using alternative backbones,

as presented in Figure 4.12. Among these options, the PVT-v2 backbone [290] stands out with
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Table 4.12: Effectiveness of different network architecture combinations. Models are evaluated on
the Trans10K-v2 dataset [308]. Note that: the results are sorting by ascending of GFLOPS.

Method Encoder Decoder GFLOPs mIoUTransformer CNN Transformer CNN

Trans4Trans-M [337] ✓ ✓ 34.3 75.1
Ours-M ✓ ✓ 34.5 76.1
Ours-B2 ✓ ✓ 37.0 79.3
Trans2Seg-M [308] ✓ ✓ 40.9 69.2
FCN [174] ✓ ✓ 42.2 62.7
OCNet [331] ✓ ✓ 43.3 66.3
PVT-M [289] ✓ ✓ 49.0 72.1

significantly higher mIoU and remarkably compact model size (MParams). Despite its higher

complexity in terms of GFLOPs compared to the FocalNet backbone [320], it still manages to achieve

better performance. Additionally, the PVT-v2 backbone [290] demonstrates a lower complexity than

the DaViT backbone [49] while maintaining competitive mIoU results. These findings highlight the

superiority of the PVT-v2 backbone [290] in achieving an optimal balance between performance

and model size, making it a promising choice for our method. When comparing PVT-v1 [289] with

other backbones, the PVT-v1 [289] backbone boasts a considerably smaller model size and lower

complexity. Despite these advantages, its performance remains competitive and comparable to the

other backbones. This demonstrates the efficiency of the PVT-v1 backbone [289], as it manages to

deliver comparable performance while being more lightweight and less computationally demanding.

Effectiveness of different modules. To assess the contribution of both the proposed BFE and RFE

modules to our architecture’s performance, we systematically evaluated the model under various

configurations: ❶ Baseline Model (PVTv1-T or PVTv2-B1 without BFE and RFE): this served

as our control group, where both the BFE and RFE modules were excluded. Results indicate a

foundational performance that the other configurations could be compared against. ❷ Incorporation

of BFE: When only the BFE module was integrated into our network, we noticed a significant

performance enhancement. However, this performance did not reach the potential of the combined

BFE and RFE configuration. This proved that while BFE is essential, it works best in tandem with

RFE. ❸ Incorporation of RFE: Similarly, adding only the RFE module to the baseline network

also increased performance. This emphasized the value of detecting reflections in transparent

objects for the segmentation task. ❹ Combined Integration of BFE and RFE: both modules were

simultaneously integrated into our network. The performance gain observed in this configuration, as
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Figure 4.12: Our method with various backbones on Trans10K-v2 dataset. The bubble’s size is its
complexity in GFLOPs.

Table 4.13: Effectiveness of different modules of our method on Trans10K-v2 dataset [308] and
Stanford2D3D dataset [3]. We reported mIoU(%) as a metric in this study. The last row corresponds
to our method (Ours-B1).

Backbone FLOPs Params BFE RFE Stanford2D3D Trans10K

PVTv1-T 10.16 13.11 - - 45.19 69.44
PVTv2-B1 11.48 13.89 - - 46.79 +1.6 70.49 +1.05

PVTv2-B1 13.22 14.37 - ✓ 48.12 +2.93 72.65 +3.21

PVTv2-B1 19.55 14.39 ✓ - 50.22 +5.03 74.89 +5.45

PVTv2-B1 21.29 14.87 ✓ ✓ 51.55 +6.36 77.05 +7.61

shown in Table 4.13, was the most pronounced, with gains of 6.36% and 7.61% in mIoU on the

Trans10K-v2 and Stanford2D3D datasets, respectively. This confirms that the combined effects of

boundary and reflection cues significantly augment the network’s segmentation capabilities.

Interestingly, the ablation studies further explain why our method works well for generic

segmentation as in the Stanford2D3D dataset. It can be seen in Table 4.13 that the boundary module

yields the most significant performance gain compared to the reflection module. This means that for

generic segmentation, where reflection feature learning has negligible improvement, our boundary

feature learning remains effective for general semantic labels.
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Table 4.14: Different designs with the proposed modules on Trans10k-v2 dataset. X → Y means
placing X before Y in Figure 4.2; X // Y means placing them in parallel and concatenate their outputs
in Figure 4.2.

Variants MParams ↓ mIoU ↑

Baseline 13.89 70.49
+ RFE → BFE in Encoder 48.98 73.54
+ BFE → RFE in Encoder 48.99 74.12
+ RFE → BFE in Decoder 14.90 75.11
+ BFE // RFE in Decoder 14.91 75.44

TransCues (BFE → RFE in Decoder) 14.87 77.05

Placement of modules. It is not trivial to incorporate both visual cues into the same framework, as

certain features may best be captured at certain stages. In our framework, we find the related features

better captured at the end of the Decoder layers, with BFE following RFE module. Table 4.14 shows

our results that the aforementioned modules’ position and order of processing matters.

4.4.6 Further Analysis and Discussions

Effectiveness of the embedding channel. We experiment with the embedding channel with

various values (64, 128, 256, 512) and report the mIoU and Accuracy of Ours-B1 model in Fig-

ure 4.13. Throughout the results, we proved that our model achieved better performance with a

higher embedding channel (from 77.05% at 64 channels to 78.85% at 512 channels). Note that, due

to memory limits, we can not perform experiments with higher embedding channels, e.g., 1024,

2048, and to save computational resources, we used Ours-B1 in this ablation study.

Real-time performance. We calculate the inference speed of our models on different GPUs

(NVIDIA GTX 1070, NVIDIA RTX 3090) with the resolution of 512 × 512 and batch size of 1.

As shown in Figure 4.14, while Our-T model has lower computational cost than other versions,

it’s important to note that all these models deliver performance levels well-suited for deployment

on robotic systems. In real-world situations, reaching a similar level of prediction accuracy on

each frame is crucial because it makes it possible for a navigation system to be more responsive,

improving the system’s capacity to aid robots efficiently.

Incorporation with other modalities. Integrating our model with depth images (RGB-D) or

polarization images (RGB-P) is a feasible enhancement. A naive method involves adding an extra
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Figure 4.13: Effectiveness of the embedding channel
in our method on Trans10K-v2 [308].

Figure 4.14: Inference time (FPS) of our pro-
posed methods on Trans10K-v2.

encoder to extract features from depth or polarization data. These additional features would then

be fused with RGB features prior to our FPM module. This strategy is in line with PDNet [187],

TROSNet [256], and PGSNet [188], as detailed in the supplementary material. It is noteworthy that

the inclusion of depth or polarization data in these models has led to significant performance en-

hancements, but also with additional computation costs. Specifically, with added depth information,

PDNet and TROSNet improved by +4% and +8% mIoU, and with added polarization information,

PGSNet experienced a +5% boost in mIoU.

Utilizing reflection removal methods for detecting reflections. Employing reflection removal

techniques, as discussed in recent studies [53, 249], offers the potential to generate pseudo labels

with distinct advantages. However, these methods are mainly designed to address global reflections

when an image is entirely encompassed by glass. These methods have limitations regarding complex

real-world situations where glass objects are distributed throughout the scene rather than occupying

a dominant position. Our study introduces the RFE module, which can detect localized reflections

and distinguish glass surfaces based on the semantic mask. This module is better suited for the

diverse and unpredictable conditions found in real-world situations where reflections are specific

to certain areas rather than uniformly distributed over the entire image, making it a better fit for

real-world scenarios.

Comparison with foundation models. To fully evaluate our method’s performance, we also

compared our method with recent powerful foundation models such as SAM model, and the results

are shown in Figure 4.15. It is important to note that the SAM model does not include semantics, or

in other words, it cannot yield masks with semantics. The SAM model also presents the challenge
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Figure 4.15: Qualitative comparison of our method with recent foundation models on Trans10k-v2
dataset.

of over-segmentation, thereby leading to a higher likelihood of false positives. As a result, we can

see that the SAM model (binary and everything) can not distinguish between glass and non-glass

regions compared to our method. It is the same for SAM variants with semantics [150, 22], which

still fails and cannot generate reasonable semantics either.

Further analysis on our reflection RFE module. To provide a further verification of the effec-

tiveness of the RFE module, we conducted the following additional experiments:

• We take a model with the RFE module that has already been trained. To prove that RFE is

effective, we compare the feature maps before and after passing through the RFE module.

Please see Figure 4.16 below. In our example, we can see that after passing through the

RFE module, we can get a stronger reflection signal, such as the transparent glass area or the

specular reflection appearing at the base of the wine glass.

• Using the same model, we try disabling the RFE module at inference by passing the feature

map before RFE directly to the next step. Note that at training, the RFE module is well-trained

as usual. Figure 4.17 shows that bypassing RFE results in a noisy feature map and wrong mask

prediction. This means that our learning of RFE does not yield a trivial function, e.g. identity,

and RFE does play an important role in processing the feature maps and output reflection
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Figure 4.16: Comparison of the feature maps before and after passing through the RFE module on
Trans10k-v2 dataset.

Input Prediction Ground-truth

With 
RFE module
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RFE module

Before MLP

Figure 4.17: Comparison of the feature maps at inference by passing through the RFE module as
usual (top row) and bypassing the RFE module (bottom row) on Trans10k-v2 dataset. Note that at
training, the RFE module is well-trained as usual.

masks.

4.5 Conclusions

In conclusion, this work proposes a method to segment transparent and opaque objects along with

general objects using pyramidal transformer architecture. Our method exploits two important visual
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cues based on boundary and reflection features, significantly leading to performance gains in both

transparent and generic segmentation tasks. We extensively evaluated our proposed method on

several benchmark datasets, demonstrating its robustness in various scenarios.

Importantly, our framework is designed to be adaptable, accommodating a variety of well-known

transformer backbones, as detailed in Figure 4.12. Additionally, our network can maintain its

efficiency and deploy on compact and edge devices. as detailed in Figure 4.14.

Our architecture is a fully transformer-based method built upon the PVT. Therefore, some

limitations still exist that lower our method’s capabilities for visual tasks. Firstly, the position

encoding of our network is fixed-size, requiring a resizing step, which will damage and distort the

object’s shape. Secondly, similar to other vision transformer-based methods, the computational

cost of our network is relatively high when dealing with high-resolution images. Finally, as stated

before, we use the same position embedding as ViT [56] and PVT [289], which is insufficient for

arbitrary resolution of input images. In future work, we would like to investigate how to address the

above limitations and improve failure cases. In addition, conventional segmentation approaches only

consider static images because they are simple to capture and process. Therefore, we would like

to investigate the extension of our method to other modalities, including depth images, event data,

videos, and dynamic scenes.
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CHAPTER 5

OPEN-VOCABULARY CAMOUFLAGED
INSTANCE SEGMENTATION

5.1 Introduction

Camouflage is a powerful biological mechanism for avoiding detection and identification. In nature,

camouflage tactics are employed to deceive the sensory and cognitive processes of both preys and

predators. Wild animals utilise these tactics in various ways, ranging from blending themselves into

the surrounding environment to employing disruptive patterns and colouration [199]. Identifying

camouflage is pivotal in many wildlife surveillance applications [72, 316], as it assists in locating

hidden individuals for study and protection.

In fact, localisation of camouflaged objects [65, 89], such as Camouflaged Instance Segmentation

(CIS), is an important research topic in computer vision, whose challenge lies in the need to learn

discriminative features that can be used to discern camouflaged target objects from their surroundings.

Existing COD techniques can be utilised to roughly identify camouflaged objects at regional scales

(via bounding boxes), but they are not designed for distinguishing individual instances at finer scales.

CIS operates under the conditions where object features closely resemble each other, resulting

in class-independent segmentation masks [210]. However, the diversity of camouflages within a

single scene can lead to complex intertwining patterns, making the task especially more challenging

in severe environmental conditions, e.g. terrestrial and aquatic environments, and poor imaging

quality, e.g. occlusions, image blurriness, and low-light conditions in underwater-applications. These

challenges also hinder the collection and annotation processes for high-quality data that can be used

for training and testing CIS algorithms.

Meanwhile, as humans look at the world and can recognise a limitless number of target cat-

egories, open-vocabulary recognition has been developed to mimic human intelligence at un-

bounded understanding, yet current endeavors have only focused on generic objects and individu-

als [332, 77, 57, 76, 196, 140, 313]. For example, while Xu et al. [313] found that Internet-scale

text-to-image diffusion models can be utilised to create a state-of-the-art open-vocabulary segmenter
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Figure 5.1: Illustration of textual-visual features of off-the-shelf Stable Diffusion when dealing with
CIS and our learnt features. Given an input image, textual-visual features are extracted and clustered
using a K-means clustering algorithm. As shown, camouflaged animals can be localised from the
clustering results. We leverage these rich features to perform instance segmentation of camouflaged
objects. This figure is best viewed in colour.

for many concepts, our investigations show that they demonstrate inconsistency and a lack of discern-

ment when it comes to camouflaging effects, as shown by their pixel-wise embeddings in Figure 5.1.

Existing works in open-vocabulary segmentation [50, 314, 313, 362, 363, 336] share the similar

traits as the ability to detect camouflages are not primary to their designs. We believe the proposed

framework may open new avenues in enhancing surveillance systems, wildlife monitoring, and

military reconnaissance. Nevertheless, it is inherently challenging to enable the robust generalization

across a diverse array of concealed targets.

In order to overcome the aforementioned hurdles, we propose a method that leverages text-to-

image diffusion to address the problem of open-vocabulary CIS. Our method is inspired by the

advanced representation learning ability of diffusion techniques and language-vision transferability

of text-image models. Text-to-image diffusion models, e.g. the stable diffusion model by [230],

are designed to learn essential object features against noise, so they can be useful in extracting

features relevant to the target objects in noisy and cluttered backgrounds. While we observed that

features learnt solely from the visual domain are weak to distinguish camouflaged objects from

their surroundings, the features learnt by text-image discriminative models, e.g. CLIP [221], still

contain rich information about the real world thanks to the variety of concepts in open-vocabulary

training data. We hypothesise that an effective combination of features learnt from both the textual

and visual domains would benefit representation learning of camouflaged objects. We illustrate the

effectiveness of textual-visual representations for CIS in Figure 5.1. To the best of our knowledge,
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such a cross-domain combination with open-vocabulary for CIS is novel, and ours is the first

framework for localizing camouflaged object instances at such a scale.

To effectively learn textual-visual representations of camouflaged objects, our method assimilates

an input image and a text prompt about the objects included in the input image, so the input image

and its implicit caption (generated by a captioner) are integrated into a text-to-image diffusion model

to extract visual features. While our method shares a similar high-level perspective with the works

by [313, 346], These features are processed at multiple scales and fused into a visual feature map,

which is then used to generate object masks. Simultaneously, textual features are extracted from the

text prompt using a text encoder. These textual features are enriched from open-vocabulary category

labels and proven to improve the discriminative power of camouflaged objects’ representations

against the background. our proposed textual-visual pipeline aggregates textual and visual features

in a mask-out manner to recognise the masks of the target objects. The diffusion model utilises a

cross-attention mechanism to link textual features with visual features and condition the feature

learning process, so the learnt features are likely to be distinct and connected to high/mid-level

semantic notions that may be expressed in the language part. Our pipeline is more specialised to

CIS by designing camouflage-specialised modules.

In summary, we make the following contributions to our work:

• We introduce a new challenging task, open-vocabulary camouflaged instance segmentation

(OVCIS) and indicate a possible lack of an effective transfer learning mechanism in open-

vocabulary segmentation regarding camouflages.

• We propose a first method for CIS, which is built upon text-to-image diffusion and text-image

transfer techniques with open-vocabulary utilization.

• We propose an open-vocabulary-based object representation learning paradigm, specifically

through a Multi-scale Features Fusion (MSFF) module to encapsulate visual features from

diffusion, a Textual-Visual Aggregation (TVA) module to utilise textual information that

pronounces visual features, and a Camouflaged Instance Normalisation (CIN) module to

adaptively capture textual-visual information that enhances the camouflaged representations.

• We conduct extensive experiments and ablation studies that demonstrate the advantages of our

method over existing works.
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5.2 Related Works

We start our review of related work with an overview of deep learning-based advances for camou-

flaged object understanding. Following it, we delve into contemporary research in text-to-image

diffusion, thereby discussing their role in facilitating open-vocabulary computer vision. Then, we

review prior research on generative models and their applications to visual segmentation. Our

discussion extends to the notion of open-vocabulary recently emerging into the field of computer

vision by the potential in making object representation learning at scale.

5.2.1 Camouflaged Object Understanding

The main aim of camouflaged object understanding lies in learning object representations that are

difficult to dissimilate from their background. Existing research works have tried to address various

tasks in camouflaged object understanding from images. For instance, [253] counted objects that

blended seamlessly into backgrounds. Following closely, [181] identified salient image regions

of hidden objects that align with the nuances of human perception. Camouflaged object detection

(COD) was studied by [89], in which the authors decomposed learnt features into different frequency

bands using learnable wavelets to identify the most informative features to differentiate target objects

and backgrounds. In addition, an auxiliary e.g. reconstruction network was built to further boost up

the discriminative power of the foreground’s features against the background’s ones. In the work

by [64], a method for segmenting camouflaged objects was proposed to segment obscured objects

without the necessity to pinpoint specific categories for the objects.

Camouflaged instance segmentation (CIS) was brought forth by [210] to emphasise the learning

of object-vs-background-discriminative representations, which is different from general instance

segmentation [309] that aims to maximise inter-object distances. Although this goal is common in

existing camouflaged object understanding methods and various attempts have been made to address

it in the literature, learning such representations from solely imagery data is challenging as it is

the nature of visual camouflage. Our research differs by exploring the potential and richness of

diffusion representations and textual data as additional cues to drive the open-vocabulary learning of

CIS, thereby utilising them to make object representations adaptive to novel objects that are never

seen in training. Thanks to the variety of concepts, textual features learnt from text prompts about

the objects included in an input image can help to localise relevant visual features. In addition, an
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effective combination of both textual and visual features would further enhance the robustness of

object representations in camouflage. To our knowledge, ours is the first of such work.

5.2.2 Text-to-image Diffusion

Significant progress has been made in Artificial Intelligence (AI)-empowered picture creation with

recent advances in large-scale text-to-image models, including Stable Diffusion [230], DALL-E

2 [223], and Imagen [233]. These models have demonstrated photo-realistic quality image generation

by being trained on text-image datasets of substantial scale sourced from the Internet. They also

have shown the ability to be conditioned on unrestricted text prompts in order to produce visuals

that closely resemble real-life photographs. The utilisation of text-to-image diffusion models has

facilitated the creation and manipulation of visual contents in an ever-easy and convenient manner via

language-based interactions (e.g., text prompts). This has enabled a wide spectrum of applications

such as content-personalised customisation [139], zero-shot translation [209], content editing [97],

and image generation [75].

In this work, we do not utilise the text-to-image diffusion technique for image creation and/or

manipulation. Rather, we explore its capability of cross-domain feature learning. Most related to

our work, Xu et al. [313] have also shown that pre-trained representations in diffusion models can

be utilised for open-vocabulary segmentation in the wild. To address its limitations with regard to

camouflages, which led to poor consistency and lack of boundary discernment, we devise a feature

fusion strategy based on a state-of-the-art text-to-image diffusion architecture to fuse image features

with implicit caption features at multiple scales. Our experiments show that such a fusion facilitates

the learning of object-vs-background discriminative features, which are crucial for CIS.

5.2.3 Generative Models for Segmentation

Many studies related to our work in terms of applying image generative models, such as Generative

Adversarial Networks (GANs) [60, 125] or diffusion models [98, 248, 48], to semantic segmenta-

tion [149, 7, 229]. For the use of GANs, a straightforward approach is to synthesise images and

their corresponding semantic maps to train a segmentation network [149]. [229], segmentation is

proceeded by training of a generative model on datasets with limited vocabulary. For example, in the

diffusion-based framework, DDPMSeg [7] was also built upon the denoising diffusion probabilistic

model (DDPM) [98] to learn a feature map for an input image. The feature map was then passed
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to a pixel classifier to perform semantic or part segmentation. A small number of hand-annotated

examples per category are then utilised to classify learnt representations into semantic regions.

Similarly, Xu et al. [313] showed that pre-trained representations in diffusion models can be utilised

for open-vocabulary segmentation in the wild. Their insight suggests that the internal representation

of diffusion models can well-correlate to high/mid-level semantic concepts that can be described by

language, hence dealing with the lack of spatial and relational understanding in traditional open-

vocabulary segmentation. Hence, the approach introduced a new capacity for generative models,

e.g. image generation-driven representation learning. However, we found that the diffusion-based

pre-trained representations are not made for tackling camouflaging effects, yet the intermediate

representations of a generative model could be learnt with high-level semantic concepts (e.g. the

presence of an object in an input image) under specific feature constraints.

5.2.4 Open-vocabulary Detection and Segmentation

Numerous research studies have been proposed to incorporate vision-language models (VLMs)

into open-vocabulary detection and segmentation [354, 332, 77, 57, 76, 196, 226, 140]. This has

enabled detection and classification of novel objects from a vast conceptual domain with help of

pre-trained VLMs [338, 300]. OVR-CNN was the first open-vocabulary object detection introduced

by [333], which underwent pre-training with image-caption data in order to learn and identify

unknown objects, followed by fine-tuning for zero-shot detection.

Following recent advances in VLMs [221, 115], ViLD [83] pioneered the incorporation of

extensive representations of pre-trained CLIP [221] into an object detector, and many works [57,

140, 359] have followed the similar framework. [57] proposed DetPro, a sophisticated automated

prompt learning method, to learn the presence of an object into a background via prompt training.

F-VLM [140] adopted a frozen VLM to generate new object categories based on cropped CLIP

features. [359] extended the ability of the well-known object detector, Faster R-CNN [228] to newly

introduced object categories by replacing the classification weights (in the classification head) by

fixed language embeddings learnt from open-vocabulary.

Despite the successes achieved, existing methods have limited capabilities against camouflaged

objects due to the utilisation of small closed vocabularies and/or the incorporation of VLMs for

generic object classes which are often distinguishable from the background. It is because the pre-

trained representations are not designed for discerning camouflaged boundaries of individuals in the
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wild but only on general classes of objects [50, 314, 313, 362, 363, 336]. While exploiting insights

and advantages from prior studies, our work stands out in a specifically focused direction: tackling

the challenge of open-vocabulary instance segmentation for camouflaged targets, yet without losing

much representation localisation capability on general objects. In particular, our proposed method

aims to segment novel object categories with a concealed appearance in the natural environment

with support from an open-vocabulary set.

5.3 Proposed Method

We aim to build and train an instance segmentation model with a set of pre-defined object categories,

referred to as Ctrain. The instance segmentation model can work on a new domain with Ctest

object categories, where Ctest and Ctrain may or may not share common object categories. In other

words, Ctest may include object categories previously unseen during the training of the instance

segmentation model. Throughout the training process, it is presumed that binary mask annotations

for target objects in each training image are available. Moreover, each mask is either associated

with a category name or a caption presented in the text form. During the testing phase, however,

neither the category label nor the caption is accessible for any test image. Only the names of the test

categories in Ctest are provided.

5.3.1 Preliminaries

We build our method upon two technical advances: text-to-image diffusion and text-image transfer.

We first briefly summarise those techniques, then we describe how they can be applied to our method.

Text-to-image Diffusion facilitates the creation of high-quality images guided by text prompts. A

text-to-image diffusion model is trained on a massive corpus of image-text pairs amassed through

web crawling [201, 233, 313], with text inputs being encoded into embeddings using an established

text encoder, e.g., T5 [222]. In the forward process, an image is perturbed by iteratively more

Gaussian noise at a controlled intensity through the diffusion network. The network is fine-tuned

to reverse the noise application in the reverse process, utilising noisy images and associated text

embeddings to diminish the distortion. In the inference phase, the model synthesises an image

from inputs including pure Gaussian noise shaped to the image’s dimensions and a user-provided

description’s text embedding. Through successive inference iterations, the model gradually denoises

the input and finally results in a photo-realistic image of the user-provided text description.
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In our work, we adopt the Stable Diffusion (SD) model developed by [230]. The SD model is

composed of some elements: a captioner (realised by a pre-trained text encoder) that generates a

text embedding for an input image; a pre-trained variational auto-encoder for learning of image

representations; and a denoising time-conditional U-Net ϵθ(·), which applies progressive convolution

operations to downsample and upsample feature maps of an input image with skip connections.

Within the U-Net, textual-visual interactions are enabled by cross-attention. In detail, the captioner

projects a text input y into an embedding, which is then transformed into Key and Value pairs. At

the same time, a feature map of a noisy image undergoes a linear projection to form a Query. This

design allows for iterative updates of input images conditioned on accompanying text descriptions.

Training of the SD model is outlined as follows. For a given pair (I,y) in a training dataset, the

image I is encoded into a latent representation z and then subjected to noise, resulting in a noised

vector zt := αtz+σtϵ, where ϵ ∼ N(0, 1) is a noise variable, and αt,σt are parameters that manage

the noise level and the fidelity of each sample. The training aims to fine-tune the time-conditional

U-Net ϵθ(·) to anticipate the noise vector ϵ and to accurately reconstruct the initial latent vector z,

while being conditioned on the text input y. The fine-tuning is performed by using a loss function

that minimises the mean squared error of noise prediction:

Ldiffusion = Ez,ϵ∼N(0,1),t,y

[
||ϵ− ϵθ(z

t, t,y)||22
]

, (5.1)

where the time variable t is randomly selected from the set {1, . . . , T }.

During the inference phase, the SD model synthesises an image by sequentially refining a latent

vector zT ∼ N(0, I) conditioned on a text input y. Specifically, for each time step t = 1, . . . , T of

the denoising sequence, zt−1 is derived from the current zt and the U-Net’s noise prediction, which

in turn takes zt and the text prompt y as inputs. Upon completion of the final denoising stage, the

latent vector z0 is transformed back to produce a final output image I ′. The SD model is heavily

pre-trained on the LAION-5B dataset [238] and performs diffusion in a latent space. Training the

diffusion model is extremely computationally expensive[230], however, as we showed in Figure 5.1,

the embeddings of SD model are not suitable for camouflages without extra processing.

Text-image Transfer originally aims to learn directly from raw text about images. It leverages

rich textual representations learnt from the textual domain to scale up representation learning in the

visual domain. As shown in the literature, natural language can be used to supervise a wide set of

visual concepts through its generality [234, 47, 340]. Recently, CLIP proposed by [221] offers the
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Figure 5.2: Pipeline of our proposed method for Camouflaged Instance Segmentation. Inputs include an
image and a text prompt of target objects (novel or unseen in the training data). Outputs include instance
masks of the target objects. We leverage state-of-the-art text-to-image diffusion and vision-language models
to learn textual-visual features that facilitate representation learning for segmenting camouflaged objects.

text-image transferibility in both directions, i.e., text-to-image and image-to-text.

In our work, we adopt a CLIP model [221] pre-trained on 400 million image-text pairs crawled

from the Internet. This model is used to generate text embeddings for implicit captions of input

images and text embeddings for text prompts associated with input images. We observed that

these text embeddings, thanks to large-scale training, can provide considerable aids to improve the

representation of camouflaged objects. The improved representations are also shown in Figure 5.1.

5.3.2 Our Pipeline

Figure 5.2 illustrates the pipeline of our method. At an abstract level, our method takes an image

and a text prompt about target objects as inputs and produces instance masks with object categories

for the target objects as outputs.

The visual image is first passed to the SD model, which is pre-trained and frozen, to extract latent

features. The input image is also fed to the pre-trained and frozen CLIP model to calculate its

implicit caption embedding. The caption embedding is inserted into the SD model at various scales

(layers) and fused with the SD model’s last layer to form image-guided features. These features are

“image-guided features” with textual information, as the textual features from the implicit caption

embedding are driven by the input image. These features are then combined at different scales

by our proposed Multi-scale Features Fusion (MSFF) module, whose outputs are coupled with
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annotated training masks, and serve as inputs to train a mask generator capable of producing instance

masks for all potential categories within the input image. The instance masks are then used to locate

object-relevant features in a mask-out manner. This step results in mask embeddings (i.e., features

extracted within masked regions).

The textual prompt is processed by CLIP, independently of the input image, to obtain its corre-

sponding embeddings. These text embeddings are transferable to visual features yet extracted from

the textual input, hence considered as “text-guided features”.

The textual-visual representations are extracted under an aggregation process of text embeddings

(text-guided features) and mask embeddings (image-guided features) using the Textual-Visual

Aggregation (TVA) module. It aims to emphasise the learnt features towards foreground objects

defined in the input text prompt, resulting in a textual-visual representation of the input image

and text prompt. Through our proposed Camouflaged Instance Normalisation (CIN) module, the

representations are normalised concerning the instance masks segmented by the mask generator and

classified into object categories by a mask classifier.

Open-vocabulary capabilities are facilitated as the entire pipeline is trained with object categories

in Ctrain, while the frozen SD and CLIP models were pre-trained at Internet scales. The training of the

entire pipeline is equivalent to learning parameters in modules specialised for camouflage instance

segmentation (multi-scale feature fusion, mask generator, textual-visual aggregation, camouflaged

instance normalisation). Once the training is completed, the inference process performs open-

vocabulary instance segmentation, i.e., instance segmentation of novel object categories in Ctest.

Towards open-vocabulary with CIS, we have developed several technical components to facil-

itate camouflaged object representation learning (see Section 5.3.3) and camouflaged instance

normalisation (see Section 5.3.4).

5.3.3 Camouflaged Object Representation Learning

Given the features learnt by the SD model from the input image and the text embeddings produced

by the CLIP from the input text prompt, we perform camouflaged object representation learning

via three modules: ❶ multi-scale feature fusion (MSFF), ❷ mask generator, and ❸ TVA, where the

mask generator is inspired from an existing work [29], and both MSFF and TVA are our proposed

modules. These modules are described below.
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Figure 5.4: Architecture of the Textual-Visual
Aggregation (TVA) module.

Multi-scale Features Fusion (MSFF). While the features obtainable from the last layer of SD

may be comprehensive, fine-grained information may be lacking due to the blending effects of

camouflage, as shown in Figure 5.1. Therefore, to capture boundary information better in general and

camouflaging cases and also to distinguish foregrounds from backgrounds, we propose that MSFF

fuse multi-scale features from the encoder part and the features from the last layer of the decoder part

of the SD model. The architecture of MSFF is shown in Figure 5.3. The fusion process is realised

via a series of operations, including concatenation (of the SD encoder’s features at multiple scales),

1× 1 convolution (of the concatenated features), element-wise multiplication (between the output of

the convolution and the concatenated features), and element-wise addition (between the output of

the element-wise multiplication and the SD decoder’s features). The visually discriminative features

are trained by adapting with the mask generator, similar to Mask2Former [29].

Pixel Decoder

Transformer 
Decoder

fused 
features 

mask predictions

query 
features

Figure 5.5: Architecture of the Mask Generator.

Mask Generator. We adopt the decoder

in the mask-attention transformer, the core

component in the Mask2Former architec-

ture [29], to realise our mask generator.

The mask generator receives input as a

fused feature vector from the MSFF mod-

ule and produces outputs including N class-

agnostic binary masks {mpred
i }Ni=1 and their

corresponding N mask embedding features

{z
pred
i }Ni=1 for all possible objects in the in-

put image. We present the architecture of

the mask generator in Figure 5.5.
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Figure 5.6: Visualization of interim and final results of the TVA module.

The mask generator employs a pixel decoder that progressively increases the resolution of

fused features returned by the MSFF module and generates per-pixel high-resolution embeddings.

This pixel decoder is designed with meticulous attention to detail, using multiple layers to capture

fine-grained and broad contextual information. Following that, a Transformer’s decoder processes

intermediate feature maps in the pixel encoder to handle object queries, which are initialised

randomly but then learnt through training. To effectively process the intermediate feature maps in

the pixel decoder, the mask generator guides each feature map at a scale to an individual layer in the

transformer’s decoder. Consequently, each layer in the transformer’s decoder focuses on a feature

map at a specific scale in the range {1/32, 1/16, 1/8}. We observed that this strategy significantly

enhances the ability of the mask generator to handle objects in various sizes.

Textual-Visual Aggregation (TVA). Given the mask embeddings of visual features and the textual

features, instead of simply concatenating them for later segmentation like [313], we also propose a

module specifically designed to highlight object-relevant features, thereby driving the learning of

object representations towards identifying foreground objects in general. We show its architecture

in Figure 5.4. As examples, we show in Figure 5.6 the qualitative raw attention maps before being

processed by TVA and the attention maps after TVA.

The TVA module operates as follows. Similar to Mask R-CNN [91], for each object mask

returned by the mask generator, we crop corresponding features from the MSFF module and perform

mask pooling. This step results in mask embeddings (i.e., embeddings are determined by masks). We

then compute the interactions between these mask embeddings and the text embeddings produced by

the CLIP. Nevertheless, instead of directly using a dot product to calculate the interaction between

two embeddings as in CLIP [221], we apply a softmax operator to the dot product of the embeddings
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to weight features, then apply mean-normalisation to remove irrelevant features prior to aggregating

them by a channel-wise summation. Removing irrelevant features helps to mitigate the problem of

noisy activations, making the learning process lean towards features relevant to the object categories

specified in the input text prompt.

Figure 5.1 visualizes the learnt textual features by our method on several difficult cases. Despite

how targets blend into backgrounds, the learnt textual-visual features on camouflaged objects can

be well identified and located. It demonstrates our method’s ability to learn the distinguishing

object-vs-background features.

5.3.4 Camouflaged Instance Normalisation (CIN)

Linear

Linear

Element-wise 
Addition
Element-wise 
Multiplication

textual-visual 
features

Linear

Norm

Figure 5.7: Architecture of the Camouflaged Instance Normal-
isation (CIN) module.

Inspired by adaptive instance nor-

malization in neural networks [108,

210], we developed a CIN module

to achieve final masks for the tar-

get objects. CIN aims to adaptively

emphasize useful aspects of visual-

textual foreground information with

respect to the foreground-back-

ground difference during learning,

thereby enhancing model perfor-

mances at dealing with camouflaging effects. We present the architecture of the CIN module

in Figure 5.7. The CIN module takes inputs as a textual-visual feature map from the TVA module

and an object mask from the mask generator. The textual-visual feature map is first projected into a

higher-dimensional space by a linear layer. Next, affine weights and biases are attained by applying

two subsequent linear layers to the result of the first linear layer. The affine weights and biases are

then combined, together with the input mask from the mask generator, to predict a final instance

mask for the object specified in the input mask. Since CIS is category-agnostic, we use a confidence

score for the existence of a camouflaged object, rather than a classification score like in generic

segmentation.
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5.3.5 Training

We train the entire pipeline of our method by optimising the loss functions used in the mask generator

and the CIN module with supervision. Specifically, we adopt a binary cross-entropy loss as our

binary mask loss Lbce and a dice loss Ldice [195] for supervising binary mask predictions in the

mask generator to remedy class imbalance.

The training of the CIN module is carried out under the conventional close-vocabulary training

approach. Suppose that we can access the ground-truth category label for each object mask during the

training phase. For each mask embedding z
pred
i produced by the mask generator, let ycate

i ∈ Ctrain

be the corresponding ground-truth category of zpredi . We invoke the text encoder T in the pre-trained

CLIP model to encode the names of all categories in Ctrain. This results in a set of text embeddings

T (Ctrain) =
{
T (c1) , . . . ,T

(
c|Ctrain|

)}
where ck ∈ Ctrain represents a category name. Thus, the loss

for embedding classification (i.e., associating mask embeddings mpred
i with their categories ycate

i )

is calculated as:

Lce =
1
N

N∑
i=1

CE

(
Softmax

(
z
pred
i T (Ctrain)

τ

)
,ycate

i

)
, (5.2)

where τ is a learnable temperature parameter and CE is the cross-entropy loss for the classification

of each training embedding.

The total loss for the training of our pipeline is finally defined as,

L = αLbce +Ldice +Lce, (5.3)

where α is a hyper-parameter, empirically set to 0.4. Furthermore, in line with work done by [30],

we apply the Hungarian matching [138] to match predicted masks with ground-truth masks and

compute the loss between matching pairs.

5.4 Experiments

5.4.1 Datasets

Following previous studies [349, 313, 51, 346], we used the instance segmentation part of the

MS-COCO dataset [166] with 80 object categories to pre-train our model. Pre-training our proposed

framework on the MS-COCO dataset helps to emphasise the discernment of prompted objects
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from their backgrounds in the wild, specifically for open-vocabulary segmentation performance.

For closed-set validation, fine-tuning the model on the 3,040 images from the training set of the

COD10K-v3 dataset [64] further adapts the model to camouflaged objects and significantly boosts

up the performance of our method.

We tested our method on two benchmark camouflaged object datasets: the test set of the

COD10K-v3 (including 2,026 images) and the NC4K [181] (including 4,121 images). The NC4K

dataset contains only test images. The training sets (for both pre-training and fine-tuning) and the

test sets (for both the COD10K-v3 and NC4K) share only 6 common object categories (out of 80

and 69 object categories from the MS-COCO and COD10K-v3/NC4K, respectively). This setting,

i.e., cross-dataset training-testing, has been used widely in the evaluation of the generalisation ability

of CIS models. It reflects the practicality of CIS, thus ensuring the reliability of evaluations.

We also evaluated our method on generic open-vocabulary datasets including the ADE20K [357]

and Cityscapes [40]. For the ADE20K dataset, we used the validation set of the short version [355]

covering 150 object categories and 2,000 images. The Cityscapes dataset contains a total of 19

classes, which are divided into 11 “stuff” and 8 “thing” classes. We conducted evaluations on the

validation set of the Cityscapes, including 500 images. Note that, we pre-trained our method on

the MS-COCO dataset and then directly evaluated the method on these open-vocabulary datasets

without fine-tuning.

5.4.2 Implementation Details

We implemented our method in Pytorch and built it on the Detectron2 framework [301]. We trained

our method for 90k iterations with a batch size of 64 on 4 NVIDIA A40 GPUs. All training

images were resized to 512 × 512-pixels. Random jitters in the range [0.1, 2.0] were applied to the

training images. We froze both the SD and CLIP models during training. We adopted the Adam

optimiser [177] with the learning rate γ set to 10−4 and weight decay of 0.05. We used a step

learning rate scheduler and reduced the learning rate by a factor of 10 at 81k and 86k iterations. The

training took 4.3 days to complete. Due to class imbalance in the COD10K-v3 dataset, we manually

removed some extremely rare classes, e.g., classes with less than five instances. In addition, we

applied the RepeatFactorTrainingSampler from the Detectron2 framework, to allow a

sample to appear more times than others based on its repeat factor.
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5.4.3 Results

We evaluated our method and existing works using the average precision (AP) measured at different

intersection-over-union (IOU) thresholds. In particular, we calculated the overall AP in the range

[50%, 95%] for the IOU thresholds (i.e., for a threshold within the above range, a predicted instance

is considered as true positive if there exists a true instance in the ground-truth such that their IOU is

equal or greater than that threshold). We also measured detailed AP for the IOU thresholds of 50%

(AP50) and 75% (AP75).

Open-Vocabulary Generalization on Camouflaged Object Datasets. We report the performance

of our method on camouflaged object datasets (the COD10K-v3 and NC4K) in Table 5.1 (last row).

Recall that, following the conventional setting in CIS, e.g., [349, 313, 51, 346], we pre-trained

our model on the MS-COCO dataset and then fine-tuned it on the training set of the COD10K-v3

dataset. To show the effectiveness of this strategy, we experimented with a variant of our method

by skipping the fine-tuning phase. In particular, we pre-trained our method on the MS-COCO

dataset and then evaluated it directly on the test set of the COD10K-v3 and the NC4K datasets.

We show the performance of this strategy in the second last row, denoted as “Ours”, in Table 5.1.

Experimental results show that fine-tuning the method on a camouflaged object dataset denoted as

“Ours (task-specific)”, significantly improves its performance on all evaluation metrics.

We compare our method with existing instance segmentation methods on the CIS task in Table 5.1.

We group existing methods into two groups: “closed-set supervised learning approach”, which

follows the traditional fashion of supervising an instance segmentation model on a training set and

tests the model on a test set, and “open-vocab text-to-image approach”, which includes methods

using text-to-image diffusion techniques with open-vocabulary. The training and test sets of this

approach are in the same domain and include imagery data only. Most existing instance segmentation

methods lie in the first group, and we benchmark them on the training set of COD10K-v3. Our

method and related works [50, 314, 313, 362, 363, 336] belong to the second group.

In Table 5.1, we show that our method with the pre-training setting significantly outperforms

ODISE on all evaluation metrics, making a new state-of-the-art for open-vocabulary CIS. With

pre-training and fine-tuning, our method also performs on par with DCNet [178] (best method of the

“closed-set supervised learning approach”), while requiring much fewer parameters. We observed

that, in general, open-vocabulary methods that do not utilise text-to-image diffusion, achieve lower
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Table 5.1: Comparison of our method with existing instance segmentation methods on the test set of
the COD10K-v3 and the NC4K datasets. Methods of the “closed-set supervised learning approach”
are trained on the training set of the COD10K-v3 dataset. Methods of the “open-vocab text-to-image
approach” are pre-trained on the MS-COCO dataset. We denote “Ours” and “Ours (task-specific)”
for two variants of our method without and with fine-tuning on the training set of the COD10K-v3
dataset. Params (M) denotes the number of trainable parameters. The best results are bold, and the
second best results are underline.

Method
COD10K-v3 Test NC4K Params

(Milions)AP AP50 AP75 AP AP50 AP75

closed-set
supervised
learning

Mask R-CNN [91] 25.0 55.5 20.4 27.7 58.6 22.7 43.9
MS R-CNN [109] 30.1 57.2 28.7 31 58.7 29.4 60.0
Cascade R-CNN [14] 25.3 56.1 21.3 29.5 60.8 24.8 71.7
HTC [23] 28.1 56.3 25.1 29.8 59.0 26.6 76.9
YOLACT [12] 24.3 53.3 19.7 32.1 65.3 27.9 35.3
BlendMask [21] 28.2 56.4 25.2 27.7 56.7 24.2 35.8
SOLOv2 [291] 32.5 63.2 29.9 34.4 65.9 31.9 46.2
Condlnst [266] 30.6 63.6 26.1 33.4 67.4 29.4 34.1
Querylnst [71] 28.5 60.1 23.1 33.0 66.7 29.4 172.5
SOTR [85] 27.9 58.7 24.1 29.3 61.0 25.6 63.1
MaskFormer [31] 38.2 65.1 37.9 44.6 71.9 45.8 45.0
Mask2Former [29] 39.4 67.7 38.5 45.8 73.6 47.5 43.9
Mask Transfiner [129] 28.7 56.3 26.4 29.4 56.7 27.2 44.3
OSFormer [210] 41.0 71.1 40.8 42.5 72.5 42.3 46.6
DCNet [178] 45.3 70.7 47.5 52.8 77.1 56.5 53.4
Ours (task-specific) 44.9 70.9 47.2 52.7 76.6 55.8 28.7

open-vocab
VLM
(w/o finetuning)

MaskCLIP [50] 3.3 5.9 4.1 6.3 5.6 6.5 542.0
MasQCLIP [314] 4.1 7.7 5.8 8.0 7.6 8.4 375.2
X-Decoder [362] 7.7 12.9 7.5 3.9 8.1 3.4 38.3
SEEM [363] 6.6 10.8 6.5 9.2 12.7 9.9 415.3
OpenSeeD [336] 6.1 10.4 5.9 9.3 14.5 9.8 116.2

open-vocab T2I
(w/o finetuning)

ODISE [313] 21.1 37.8 20.5 22.9 37.2 21.4 28.1
Ours 23.4 43.8 22.6 24.3 43.7 23.5 28.7

performances. The main reason for this issue is their designs focus only on common objects like

humans, butterflies, rabbits, birds, cats, ducks, etc., thus fail to describe concealed objects. As
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Input Ground-truth OursOSFormer DCNet ODISE

Figure 5.8: Qualitative comparison on COD10K-v3 and NC4K. Our method outperforms others and
has competitive performance as DCNet [178] at a twice smaller model size.

shown, the Stable Diffusion model (SD), being trained with large-scale and open-vocabulary datasets,

provides complementary information that can enrich representation learning of camouflaged objects.

In summary, with regard to both the segmentation accuracy and memory usage, our method is

more advanced, compared with existing ones. Recall that only 6 object categories are shared between

MS-COCO (80 categories) and COD10K-v3/NC4K (69 categories). This challenge shows the ability
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Figure 5.9: Failure cases on the COD10K-v3 dataset, illustrating that our method may fail to separate
instances of occluded targets. For example, only the black panther’s body parts can be observed in
the last column.

of our method to handle open-vocabulary tasks. We visualize several results of our methods and

existing ones in Figure 5.8, where our method excels at accurately delineating camouflaged objects

along their blurry boundaries in cluttered backgrounds at significant proficiency.

Figure 5.9 illustrates failure cases of our method. In the first and second columns, our method

fails to separate instances of nearby and similar objects, such as the yellow fish and two sea lions.

Our method can detect and segment camouflaged objects in the third and fourth columns but with

slightly less accurate boundaries. In the last column, our method struggles with the significant spatial

separation of the black panther’s body parts, leading to misclassification of the entire object. We

found that our method would be ineffective in distinguishing and separating an object that shares

very similar characteristics with others or consists of fragmented parts. However, such circumstances

would also be challenging for human beings as well.

Open-Vocabulary Generalization on Generic Datasets. To showcase the versatility and general-

ity of our method in various application domains (other than camouflaged objects), we evaluated our

method on the ADE20K [357] and Cityscapes datasets [40], two widely used open-vocabulary bench-

mark datasets. Note that these datasets are not designed for camouflage detection and segmentation.

We summarise the performance of our method and existing open-vocabulary instance segmentation

methods in Table 5.2. Our method ranks second on both ADE20K and Cityscapes. Nevertheless,

compared with the first ranked method, i.e., OpenSeeD [336], our method uses approximately 4
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Table 5.2: Comparison with existing open vocabulary in-
stance segmentation methods using AP metric. The best and
second results are bold, and underline.

Method ADE20K Cityscapes Params (M)

MaskCLIP [50] 6.2 - 542.0
ODISE [313] 13.9 - 28.1
X-Decoder [362] 13.1 24.9 38.3
OpenSeeD [336] 15.0 33.2 116.2
Ours 14.1 25.6 28.7

Table 5.3: Ablation study of our
method on applying prompt engineer-
ing to improve open-vocabulary CIS
task on the COD10K-v3 dataset.

Prompt AP AP50 AP75

✗ 22.8 43.1 22.1

✓ 23.4 +0.6 43.8 +0.7 22.6 +0.5

times fewer parameters than OpenSeeD, while scarifying less than 1% and 8% of the overall AP on

ADE20K and Cityscapes, respectively.

5.4.4 Ablation Studies

Our ablation studies were conducted to validate different aspects of our method, particularly into

the impact of prompt engineering on open-vocabulary CIS and into the modules developed in our

method to make it specialised to CIS.

Prompt Engineering for Open-vocabulary CIS. For open-vocabulary-based studies, an object

category can be specified by multiple alternative text descriptions. For instance, the “cat” category

can be described as “cat”, “cats”, “kitty”, or “kitties”. To improve the diversity of open-vocabulary

in text prompts, we applied the identical prompt engineering method introduced by [77] to assemble

a list of synonyms, subcategories, and plurals for the categories. Given a text prompt, the category

is chosen as the one with the highest probability from an ensembling list of multiple alternative

queries. We observed that the prompt engineering technique is simple yet effective in improving the

segmentation accuracy of our method, as shown in Table 5.3.

CIS-specialised Modules. We developed several modules to make our method specialised to CIS.

We refer the reader to Figure 5.2 for a recall of how the modules are configured in our pipeline. To

confirm the importance of those modules, we experimented with different variants of our method;

each variant is made by altering and omitting a module. We pre-trained the variants on the MS-

COCO dataset for 30k iterations and then tested them on the test set of the COD10K-v3 dataset. We

present the results of this ablation study in Table 5.4.
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Table 5.4: Ablation study on the effectiveness of the proposed modules on COD10K-v3.

Variant AP

no text (text embeddings = 0) 12.2 -7.1

skip the MSFF module (only the last layer of the diffusion U-Net is used) 18.4 -0.9

skip the CIN module (directly use the TVA’s output for instance classification) 17.6 -1.7

skip the TVA module (element-wise dot product of mask embedding and text embedding) 18.8 -0.5

Full setting (Ours) 19.3

Text embeddings play crucial roles. We investigate by implementing a setting where text

embeddings used in the model are set to zeros. A significant drop in the performance, resulting in

the lowest AP (12.2), indicates the importance of providing contextual or semantic information that

helps to identify camouflage through open-vocabulary text.

MSFF aggregates essential diffusion features. It is the MSFF module that fuses image-guided

features learnt by the diffusion model at multiple scales. We found that without the proposed

module (directly feeding the last layer of the diffusion U-Net to the mask generator), we can incur a

performance loss. Compared with the full setting which fuses all the layers from both the encoder

and decoder of the diffusion U-Net, the last layer of the diffusion U-Net apparently carries substantial

information for the instance segmentation task.

TVA discerns camouflages against backgrounds via textual guidance. Through TVA, textual and

visual features are aggregated alongside instance masks and consolidated against the background via

feature weighting. We visualize the impact of the TVA module in Figure 5.6. To validate this module,

we simplified its operation by applying an element-wise dot product on the input mask embeddings

and text embeddings. We observed that, compared with other modules, the TVA module is less

critical, evident by the least performance drop when the simplification is applied to its architecture.

CIN enhances the instance-level representations of camouflages. To validate CIN, we removed

it from our pipeline by directly passing the outputs from the TVA module to mask prediction and

classification. Without the CIN module, the AP of the pipeline would decrease dramatically (from

19.3 to 17.6).
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5.5 Conclusion

This work advances the computer vision research for camouflaged instance segmentation by leverag-

ing text-to-image diffusion and text-image transfer techniques. We aim to raise people’s awareness

about the possible lack of transfer effectiveness in open-vocabulary segmentation regarding camou-

flages. Furthermore, we propose a method that effectively integrates textual information learnt from

open-vocabulary into the visual domain to enrich the representations of camouflaged objects. We

evaluate our method and compare it with existing methods in both CIS and generic open-vocabulary

segmentation on benchmark datasets. On the one hand, the method struggles with segmenting

occluded objects, and under severe occlusions, a camouflaged object can be over-segmented into

non-semantic fragments. Nevertheless, our experimental results show the effectiveness and advan-

tages of our method over existing baselines in both tasks.

Despite proven strengths, the proposed method has limitations. While the learnt knowledge

from natural language can be effective to distinguish an object from its background when visual

cues are insufficient due to camouflage, it may not be helpful to separate touching/overlapping

instances. Additionally, the method struggles with segmenting occluded objects. Under severe

occlusions, a camouflaged object can be over segmented into non-semantic fragments, leading to

misclassification of the object. Enhancing object representations with background-aware features

from open-vocabulary (i.e., by using text prompts including both foreground and background

information, e.g., “a lizard is on a tree”) may help to address the aforementioned issues. We consider

this research direction as our future work.

While open-vocabulary recognition has recently attracted considerable attention in the computer

vision community, to the best of our knowledge, our work is the first to provide a framework for

localising camouflaged object instances based on open-vocabulary. We believe the proposed frame-

work will open an avenue for new research and developments in surveillance, wildlife monitoring,

and military reconnaissance. Nevertheless, it is always challenging to learn general knowledge

across a diverse array of concealed targets from open-vocabulary.
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CHAPTER 6

VIDEO DATASET FOR CAMOUFLAGE ANIMAL
UNDERSTANDING

6.1 Introduction

The continuously evolving neural networks (e.g. CNNs [94] and ViTs [55]) provide a powerful and

efficient tool to perform visual understanding based on the captured imagery/videos. Enhancing

both data and algorithm has achieved promising success and progress. Large-scale datasets (e.g.

COCO [165], ADE20K [356] and Object365 [241]) with supervisions serve as the essential stimulus

to foster various powerful visual perception algorithms [310] and benchmark various algorithms for

revealing further research directions. Most existing datasets mainly contain our everyday objects

(e.g. 80 categories in COCO). This work focuses on the camouflaged animals, which are currently

less concern and explored.

Monitoring and understanding camouflaged animals is crucial for biodiversity conservation [224,

250], as it helps protect species that are otherwise difficult to detect and at risk of unnoticed

population declines. Furthermore, studying camouflaged animals provides insights into evolutionary

biology and adaptation mechanisms, enriching our scientific understanding of natural selection.

However, unlike everyday objects, collecting imagery/videos of camouflaged animals is more

challenging, and further annotation procedures usually involve domain experts. Segmentation, gen-

erating precise masks for objects’ interest, is the fundamental task in computer vision. Camouflaged

animal segmentation helps accurately identify and isolate these animals from their backgrounds in

images, facilitating detailed study and analysis. The yielded masks aid in gathering precise data

on their behavior, habitat, and population dynamics, enhancing our overall understanding of their

ecology. There are several efforts [310, 35, 142, 278] achieved to perform the camouflaged animal

segmentation. Specifically, camouflage is a powerful biological mechanism for avoiding detection

and identification, making it more challenging to perform precise segmentation.

Various datasets (e.g. CAMO-COCO [147], COD10K [64], CAM-LDR [179], S-COD [95]) have

been collected for both image-level camouflaged animal segmentation. However, the image-level
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Frames B.Box and Mask Opt. Flow Expressions

There is a flounder moving around

A flounder is blending into the sand

A flounder is swimming to the left

Figure 6.1: Example from our proposed CamoVid60K dataset with bounding box, mask, coarse
optical flow, and expressions.

camouflaged animal segmentation cannot well satisfy biological monitoring and surveying purposes,

where the activity and behavior [317] should be recorded. The MoCA dataset [143] is the most

extensive compilation of videos featuring camouflaged objects, yet it only provides detection labels.

We argue that only the bounding box annotations cannot well delineate the camouflaged animals,

especially those with irregular boundaries, poses, and patterns (e.g. the transparent fins of the fish).

Furthermore, despite the shifting from image to video, the data annotations remain insufficient in

both volume and accuracy for developing a reliable video understanding model capable of effectively

handling complex camouflaged situations.

To fill this gap and perform camouflaged animal video understanding (CAVU) in real-world

scenarios, we present CamoVid60K, a comprehensive video dataset dedicated to the understanding

of camouflaged animals. It comprises 218 videos with 62,774 finely annotated frames, covering

70 animal categories. Table 6.1 compares our proposed dataset with previous ones, showing that

CamoVid60K surpasses all previous datasets in terms of the number of videos/frames and species

included. Unlike previous datasets that annotated every fifth frame, our dataset offers annotations

for every single frame. Additionally, we provide a wider variety of annotation types (animal

categories, bounding box, annotated mask, coarse optical flow, expression), making it a more

effective benchmark for CAVU tasks. Our dataset supports a broad range of downstream tasks as

shown in Figure 6.1, including classification, detection, segmentation (semantic, referring, motion),

and optical flow estimation, etc.

We also propose baselines for each task and corresponding benchmarks to explore the boundary

of these advanced algorithms to perform robust and precise video understanding. Our CamoVid60K

stands as a novel and important testing set for both computer vision, animal conservation, and

wildlife animal research communities.
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Table 6.1: Comparison with existing video animal datasets. Class.: Classification Label, B.Box:
Bounding Box, Motion: Motion of Animal, Coarse OF: Coarse Optical Flow, Expres.: Expression.
Note that, MVK [267] dataset mostly consists of normal marine animals with only some camouflaged
animals. The frequency of annotations refers to how often each frame is annotated. For instance,
MoCA-Mask provides annotations for every five frames, resulting in 4,691 annotated frames. In
contrast, our CamoVid60K dataset offers a significantly larger volume of data with more frequent
annotations and a wider variety of annotation types.

Dataset Venue # videos / frames # species Frequency Class. B.Box Mask Motion Coarse OF Expres.

CAD [214] ECCV’16 9 / 839 6 every 5 frames ✓ ✓

MoCA [143] ACCV’20 141 / 37,250 67 every frames ✓ ✓ ✓

MoCA-Mask [35] CVPR’22 87 / 22,939 44 every 5 frames ✓ ✓

MVK [267] MMM’23 1379 / 992,880 - every 30 frames ✓ ✓

CamoVid60K - 218 / 62,774 70 every frames ✓ ✓ ✓ ✓ ✓ ✓

Our main contributions are summarized as follows:

• We present a large-scale, comprehensive video dataset dedicated for camouflaged animal

understanding, with a significantly larger data and annotation types than the existing datasets.

• We propose a simple pipeline for camouflaged animal detection and segmentation with

comparable performance.

• We benchmark various camouflaged animal understanding tasks, including image classifica-

tion, object detection, and motion segmentation based on several state-of-the-art models.

6.2 Related Works

6.2.1 Camouflaged Scene Understanding

Camouflaged scene understanding (CSU) is a hot computer vision topic aiming to learn discrimina-

tive features that can be used to discern camouflaged target objects from their surroundings [66].

CSU tasks can be divided into image-level and video-level categories. Image-level CSU tasks include

five main types: camouflaged object counting [254], camouflaged object localization [180, 179],

camouflaged object segmentation [64, 113, 89], camouflaged instance ranking [180, 179], and

camouflaged instance segmentation [210, 146]. These tasks can be further categorized based on

their semantic focus: object-level and instance-level. Object-level tasks focus on identifying objects,

while instance-level tasks aim to differentiate various entities. Additionally, camouflaged object

counting is considered a sparse prediction task due to its nature, while the other tasks are classified

as dense prediction tasks.
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In addition, CSU video-level task includes video camouflaged object segmentation [114, 305, 35]

and video camouflaged object detection [143, 141, 317, 310, 193, 135]. Overall, the progress of

video-level CSU has been somewhat slower than image-level CSU, primarily because the process of

collecting and labeling video data is labor-intensive and time-consuming.

6.2.2 Video Camouflaged Object Detection and Segmentation

We review two kinds of perception tasks for camouflaged animal videos: detection [143, 141, 317,

310, 193, 135] and segmentation [114, 305, 35, 142]. The former video camouflaged object detection

(VCOD) yields BBOX sequences for the camouflaged animals, while the latter video camouflaged

object segmentation (VCOS) generates dense pixel-level masks. MoCA [143] proposed the first

large-scale moving camouflaged animals video dataset with BBOX annotations and additional

optical flows to boost the detection of camouflaged animals. Further work [141] incorporated visual

appearance from a static scene as additional clues to promote the ability of the model to detect

camouflaged animals. However, the BBOX annotations could not accurately describe camouflaged

objects’ pose, appearance, and patterns. To address this issues, Xie et al. [305] proposed a novel

pixel-trajectory RNN to cluster fore-ground pixels and generate dense segmentation masks for object

discovery in videos. MoCA-Mask [35] proposed the first large-scale dataset and benchmark with

pixel-level handcrafted ground truth masks for camouflaged animal videos. However, MoCA-Mask

provides bounding boxes and pixel-wise masks for only every fifth frame, totaling just 4,691

frames, which is insufficient for deep learning approaches. In contrast, our dataset offers annotations

for every frame, resulting in 62,774 annotated frames (13 times larger). This substantial increase

can significantly enhance the performance of various downstream tasks. Our dataset and benchmark

pave the way for future exploration and a deeper understanding of camouflaged animal analysis.

6.3 CamoVid60K Dataset

Collecting video datasets for camouflaged animals is quite challenging, even without focusing on

long-form videos. This is because manually collecting, observing, and annotating videos with

several annotation types is labor-intensive, time-consuming, and expensive. In addition to the

costs, ensuring visual data diversity and high-quality annotations adds to the difficulty. This section

proposes a staged data collection and processing pipeline in Figure 6.2.
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Figure 6.2: CamoVid60K data pipeline. Stage I includes data curation, filtering irrelevant videos,
and extracting all frames. Stage II includes data annotation, generation, and filtering.

6.3.1 Data Construction and Processing

Data sources. We built our dataset from previous datasets (Table 6.1) and crawled videos from

the internet to cover various camouflaged animals. To crawl videos from the internet, we curated a

list of animals’ names that potentially have camouflage abilities. Then, we created a template for

searching and downloading videos ‘video of camouflage + animals’ name‘. Combining with videos

from the above datasets, we collected 1,929 videos in total.

Pre-Processing. We manually checked and filtered blurry, irrelevant videos with obvious animals.

Next, we extracted every frame (instead of every five frames proposed in existing datasets, see Ta-

ble 6.1) of each video before annotating them. At the end, our dataset comprises 218 videos with

62,774 frames of 70 animals.

BBOX and Mask Annotation. We utilized annotation tool from [352] which heavily based on

Segment Anything Model (SAM) [133] for mask initialization and bounding box and XMem [33]

for mask and bounding box propagation. Then, we manually check and refine every frame to provide

accurate bounding boxes and segmentation masks.

Annotation Filtering. We adopt the perceptual camouflage score (Sp) from [142] to quantify the

effectiveness of animals’ camouflage, i.e. how successfully an animal blends into its background.

Based on the perceptual camouflage score, we will keep the videos that are higher than the threshold

(Sp > 0.5). In detail, we explain how to adopt the perceptual camouflage score Sp as follows:

Sp = (1 −α)SR +αSB (6.1)
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Algorithm 2: Optical Flow Computation and Filtering

Input: Sequence of frames

Output: Sequence of computed optical flows

1: for each pair of frames (i, j) do

2: Computing all pairwise optical flows using RAFT [265]

3: Computing DINO features [204] for each frame

4: Filtering flows using cycle consistency and appearance consistency check

5: Applying chain cycle consistent correspondences to create denser correspondences

6: end for

where SR, SB, α are the reconstruction fidelity score, the boundary score, and the weighting

parameter, respectively.

In detail, given an image I and segmentation mask mS, the reconstruction fidelity score SR is

computed by assessing the difference value between the foreground region and its reconstruction.

Specifically, it counts the number of foreground pixels (Ifg = I ⊙ erode(ms)) that have been

successfully reconstructed from the background (Ibg = I⊙ (1 − dilate(ms))):

SR(I,ms) =
1
Nfg

∑
(i,j)∈Ifg

R(i, j) (6.2)

R(i, j) =

{
1 if ||Ifg −ΨIbg(Ifg)||2 < λ||Ifg||2

0 otherwise
(6.3)

where ΨIbg(.) denotes the reconstruction operation, Nfg = |erode(ms)| is the total number of pixels

in the foreground region, and λ is a threshold.

Then, the boundary visibility score aims to measure the animal’s boundary properties (or contour

visibility) by penalizing the boundary pixels that are predicted as contour in both images’ contour

(C) and the ground truth animal’s contour (Cgt) with F1 metric:

SB(I,ms) = 1 − F1(mb ⊙Cgt, mb ⊙C) (6.4)

where mb = dilate(ms) − erode(ms).

We used the same values for parameters as in [142], such as α = 0.35, λ = 0.2.

Note that, due to the characteristics of camouflaged animals and video’s resolution, some frames
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or some videos will contain errors/mislabelled at the boundary of animals and background. We will

keep improving the quality of the mask annotations and provide rotated bounding boxes (RBbox)

in the next version. RBbox excels in traditional axis-aligned bounding boxes in three main areas:

better localization (accurate fit for elongated and rotated objects), reduced overlap, and improved

isolation of objects (capturing the proper aspect ratio and containing fewer background pixels).

Coarse Optical Flow Annotation. Previous optical flow datasets, e.g. Flying Chair [54], KITTI [190],

Sintel [13] utilized either simulation software or real images with other heavy sensors information

(depth, LiDAR, etc.) and algorithms to create optical flow ground-truth. It is time-consuming and

requires extreme effort. In addition, with the development of deep learning techniques, many meth-

ods [265, 286] can produce accurate estimated optical flow. Therefore, we utilized these methods

for our coarse optical flow annotation with the pseudo algorithm shown in Algorithm 2.

Note that, even though our processing pipeline for optical flow annotation will produce accurate

and dense optical flow, it is still estimated optical flow, so it is reasonable and capable of use as

additional input to boost performance for other tasks such as motion segmentation task. It is not

recommended to use it as ground truth for evaluation.

Motion Annotation. Following [143], we manually labeled our dataset by their types of motion,

as shown below. Based on the motion types, We can further annotate the camouflage methods of

animals, which we plan to provide in the next version.

• Locomotion: when the animal has movement(s) that significantly changes its location.

• Deformation: when the animal engages in a more delicate movement that only changes its

pose while remaining in the same location.

• Still: when the animal remains still.

Expression Annotation. We first utilized GPT-4V [264] to create a concise description within

30 words that accurately represents the target object for every frame. However, we found that

the captions of aquatic animals are less accurate; therefore, we utilized MarineGPT [353], a first

vision-language model specially designed for the marine domain for aquatic animals. After the

initial annotation, we verified and refined all annotations and chose the best three captions for each

video sequence. Objects that could not be localized using language expressions were removed.
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Aquatic AnimalsTerrestrial AnimalsFlying Animals

Figure 6.3: Left-Top: Word cloud of category distribution of camouflaged animals. Right-Top: Tax-
onomic structure of our dataset by their biology-inspired hierarchical categorization. It encompasses
various animals, spanning 70 categories across flying, terrestrial, and aquatic groups. Left-Bottom:
Some examples with different animals’ positions. Right-Bottom: Spatial distribution of animals’
position based on bounding box. It reveals that annotations are more densely concentrated in the
central region, while there is a comparatively lower density of annotations towards the edges.

6.3.2 Dataset Specifications and Statistics

Figure 6.4: Data organization of our dataset.

Data Organization. As shown in Fig-

ure 6.4, we split our dataset based on

displacement into two subsets: small

displacement (every single frame) and

large displacement (every fifth frame).

This division is beneficial for evaluat-

ing motion segmentation methods, as

it provides a robust framework for an-

alyzing algorithms’ performance un-

der varying motion and displacement

conditions. Each subset will include

training and testing sets with images,

pre-computed optical flows, and annotations. We name every image as follows: ‘SuperClass-
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Figure 6.5: Category distribution (100 to 4,500 frames) and visual examples (extracted animal masks)
of our dataset. The variety ensures diversity of camouflaged animals, allowing for comprehensive
evaluation across various scenarios. We will keep adding more data to balance the distribution.

SubClass-SubNumber-MotionType-FrameNumber.‘ This systematic naming convention ensures

clarity and ease of reference within the dataset.

Category Diversity. The distributions of camouflaged animals by the biology-inspired hierarchical

categorization within three super groups are visually represented through word clouds in Figure 6.3-

Top and Figure 6.5. Additionally, Figure 6.3-Bottom showcases some examples with different

animals’ positions and the total sum of normalized bounding boxes across the entire dataset.

Evaluation Protocol. Our dataset supports a broad range of downstream tasks. Therefore, we will

evaluate each task using different metrics.

• Motion Segmentation: we adopt the same metrics as in [35] to assess the pixel-wise masks:

Mean Absolute Error (M), Enhanced-alignment measure (Eϕ) [63], Structure-measure (Sα) [62],

Weighted F-measure (Fwβ ) [185], mean Intersection Over Union (mIoU), mean Dice (mDic).

• Object Detection: we use the mean Average Precision (mAP).

• Image Classification: we use the mean Accuracy (mAcc).

• Referring Segmentation: we utilize the mIoU, region similarity J and contour accuracy F, and

their average J&F for video object segmentation.
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Figure 6.6: Our simple pipeline takes a sequence of images/video and the associated optical flow as
input. They are fed into separated encoders for feature extraction. Then, the motion features with
spatial and temporal positional encoding are passed to Pixel Decoders to produce a set of enriched
motion features. Next, the Transformer Decoder takes the visual features and enriched motion
features to produce mask embedding for the moving object and bounding box.

6.4 A simple pipeline to discern camouflaged animals

After constructing the dataset, we propose a simple pipeline based on Mask2Former architecture [29]

for both object detection and motion segmentation tasks. As shown in Figure 6.6, our proposed

simple pipeline processes a sequence of images or videos by employing any off-the-shelf flow

estimation methods. In our case, we directly take the refined optical flow in our dataset instead of

utilizing the RAFT method [265] to estimate raw optical flow as [142]. The images and associated

estimated flows are passed into two separated encoders for feature extraction. Subsequently, each

timestamp’s image and flow features are aggregated before going through the decoder to predict the

segmentation mask.

Visual Encoder. We adopt the SINet-v2 [64] architecture that takes RGB sequence as input

Iv = {Iv1, Iv2, . . . , Ivn} ∈ Rn×dv×h×w, where n is the number of frames, dv is the dimension of frame,

h&w are the height & width and outputs visual features {fv1, fv2, . . . , fvn} = Φvisual(I
v).

Motion Encoder. Inspired by the motion segmentation architecture [141], we use light-weight

convNet that takes as input a sequence of optical flows If = {If1, If2, . . . , Ifn} ∈ Rn×df×h×w, where
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df is the dimension of flow field and output motion features {fm1 , fm2 , . . . , fmn } = Φmotion(I
m). Then,

concatenating motion features with learned spatial and temporal positional encodings to output a set

of enriched motion features.

Decoder. We adopt Mask2Former [29] architecture, which includes Transformer and Pixel De-

coders. The Transformer decoder combines a trainable query for mask embedding with the results

of the motion encoder and visual features. Like Mask2Former, this query focuses on multi-scale

motion features and visual features, resulting in mask embedding for the moving object. In addition,

similar to the pixel decoder in Mask2Former, a ConvNet decoder with low computational complexity

utilizes skip-connections to generate high-resolution segmentation masks and bounding boxes from

the motion features and mask embedding.

Training and Loss. To optimize our pipeline, we utilized the L1 loss for the bounding box

regression, cross-entropy for the confidence score, and binary cross entropy (BCE) loss for motion

segmentation. The total loss for the training of our pipeline is finally defined as follows:

L = Lbce + LL1 + Lce, (6.5)

6.5 Experiments

This section introduces the baselines and details of the training for each task. We thoroughly analyze

each task in our experiments and discuss each method’s effectiveness, including ours.

6.5.1 Baselines

For motion segmentation task, we selected recent SOTAs to compare, including two frame-based

methods (PraNet [67], SINet-v2 [64]) and two video-based methods (MG [317], SLT-Net [35]). For

a fair comparison, we utilize the implementations provided by the authors and train all methods

using the same training set.

For object detection task, we compare with four well-known detection methods, such as Faster-

RCNN [227], DETR [16], DINO [335]. We followed the so-called 1× setting (12-epoch setting) for

training and used the same ResNet50 [94] as the backbone for all methods.
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Table 6.2: Quantitative results of motion segmentation on
CamoVid60K dataset. Our model consistently achieves better
performance than other competitors on all metrics.

Methods Sα ↑ Fwβ ↑ Eϕ ↑ M ↓ mDic ↑ mIoU ↑

Image
PraNet [67] 0.526 0.161 0.547 0.045 0.198 0.144
SINet-v2 [64] 0.529 0.166 0.553 0.042 0.206 0.149

Video
MG [317] 0.522 0.153 0.541 0.043 0.197 0.141
SLT-Net [35] 0.576 0.253 0.591 0.039 0.268 0.249
Ours 0.566 0.249 0.589 0.041 0.270 0.252

Table 6.3: Quantitative re-
sults of object detection on
our CamoVid60K dataset.

Methods AP ↑

F-RCNN [227] 28.71

DETR [16] 37.56
DINO [335] 39.84

Ours 38.39

For zero-shot image classification task, we tested recent three methods, including CLIP [221],

UniCL [321] and K-LITE [242]. We used the Swin-T model for both UniCL and K-LITE (pre-trained

on ImageNet-21K dataset [46]) and the ViT-B/32 pre-trained model from OpenAI CLIP.

All methods are trained and tested on the same NVIDIA 3090 GPU, except the pre-trained

models in the zero-shot image classification task.

6.5.2 Benchmarks and Discussions

Comparison with image-based and video-based motion segmentation methods. We report the

performance of our method with other methods in Table 6.2. Compared to image-based approaches,

our method demonstrates significantly superior performance thanks to the incorporation of temporal

information. When evaluated against video-based approaches, our method also surpasses MG [317],

which relies solely on estimated optical flows as input. However, compared to the recent state-

of-the-art method SLT-Net [35], our method performs better on certain metrics. This is because

SLT-Net excels at modeling both short-term dynamics and long-term temporal consistency from

videos, allowing for joint optimization of motion and camouflaged object segmentation through a

single optimization target.

Comparison with object detection methods. As shown in Table 6.3, the proposed model demon-

strates performance comparable to other specialized methods, owing to its dual capability in object

detection and motion segmentation. Specifically, our method significantly outperforms CNN-like

methods. This advantage stems from dual optimizations in the detection and segmentation streams,

along with the integration of additional optical flow information. However, when compared to
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Table 6.4: Ablation study on the impact of
flow information on our method.

no OF raw OF refined OF

mIoU 28.34 32.16 32.81

Table 6.5: Zero-shot Image Classification perfor-
mance on our CamoVid60K dataset.

CLIP [221] UniCL [321] K-LITE [242]

mAcc 30.06 30.89 31.44

DETR-like methods, our approach shows mixed results. It surpasses the standard DETR model [16]

yet falls short of DINO, an advanced variant of DETR. DINO [335] enhances performance through

several innovative techniques: it employs contrastive denoising training to refine one-to-one match-

ing, a mixed query selection method to initialize the queries better, and a ’look forward twice’

method that utilizes gradients from subsequent layers to adjust parameters more accurately.

Additional Analysis. As shown in Table 6.4, optical flow plays a crucial role in the motion

segmentation of camouflaged animals because optical flow can detect subtle movements by analyzing

the motion vectors between frames, distinguishing moving animals from static backgrounds, which

is particularly useful in identifying the slight movements of camouflaged animals.

State-of-the-art methods, including foundation models (trained on large datasets), struggle

with zero-shot image classification of camouflaged animals, as shown in Table 6.5. This is due

to their subtle and complex patterns, lack of specific training data, and difficulty in generalizing

across different backgrounds and lighting conditions. Improving these methods involves curating

specialized training data (or fine-tuning on our dataset), using enhanced techniques like data

augmentation, few-shot learning, and developing context-aware models.

6.6 Conclusion

In this work, we introduced a large-scale video dataset for camouflaged animal understanding,

named CamoVid60K, to foster further research on animals. This dataset provides a considerable

benchmark for camouflaged animal video understanding tasks, enabling the evaluation of various

algorithms and methods. We also plan to scale up our dataset and utilize it to build a foundational

model for studying camouflaged animals.

Limitations and Future Works. As mentioned in Section 6.3, the annotation quality in some cases

is suboptimal. We plan to enhance these annotations and also provide more types of annotations
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in the future. Additionally, our current pipeline requires images and pre-computed optical flow as

inputs, which restricts the inclusion of new data to our pipeline due to the necessity of pre-computed

optical flow. To address this limitation, we will propose a learnable module to estimate the implicit

optical flow field.

New Benchmark. The CamoVid60K is a diverse and comprehensive benchmark curated from

publicly accessible datasets and the internet to enhance the assessment and exploration of camou-

flaged animal understanding. It includes various camouflaged animals across various environments,

providing a robust framework for testing and developing new models.

Impact on Animal Study. By providing detailed and varied data on camouflaged animals, the

CamoVid60K dataset significantly contributes to studying animal behavior, ecology, and evolution.

Researchers can utilize this dataset to explore how different species utilize camouflage in their

natural habitats, leading to deeper insights into predator-prey interactions and survival strategies.

Furthermore, this dataset can aid conservation efforts by improving the detection and monitoring of

endangered species in their natural environments.

Broader Impact. The study of camouflaged objects has several important applications, such as

identifying and safeguarding rare animal species, preventing wildlife trafficking, detecting medical

conditions like polyps or lung infections, and aiding in search-and-rescue operations. Our dataset

deliberately excludes any military or sensitive scenes, ensuring its focus remains on benign and

beneficial applications. Besides the significant applications mentioned, our work advances the

understanding of video content in the presence of distorted motion information, contributing to the

broader field of video analysis and computer vision.

Licenses. We built our dataset from previous datasets and crawled online videos. Therefore, we

will follow their Term of Use or Licenses (MoCA, MVK) for our dataset, which is CC-BY-4.0. The

copyright remains with the original owners of the video. In addition, anyone shall use the dataset

only for non-commercial research and educational purposes.
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CHAPTER 7

CONCLUSION AND FUTURE WORKS

In conclusion, this thesis addresses critical challenges in computer vision and graphics, with a

particular focus on transparent objects, dynamic human and animal movement, and camouflaged

animals for both indoor, outdoor, terrestrial, and underwater (marine) environments.

In Chapter 2, we introduced Test-time augmentation for enhancing downstream tasks in both in-

door and outdoor environments, encompassing autonomous driving scenarios and utilizing synthetic

as well as real-world data types. Moving on to Chapter 3, we delved into the joint reconstruction of

objects (human and animals) and estimation of flow for dynamic point clouds. Then, in Chapter 4,

we explored the utilization of Boundary and Reflection cues for Transparent Objects Segmenta-

tion. Next, we leveraging text-to-image diffusion to address the problem of open-vocabulary for

camouflaged instance segmentation in Chapter 5. Later in Chapter 6, to fill the gap of lacking

camouflage animal video dataset and also perform camouflaged animal video understanding in

real-world scenarios, we present a comprehensive video dataset dedicated to the understanding of

camouflaged animals.

The proposed methodologies and datasets showcase exceptional performance improvements

and efficiency gains, significantly advancing the field. By combining cutting-edge techniques with

traditional approaches, this research paves the way for a new era of innovation and progress in

computer vision and graphics.

Although the methods proposed in this thesis are novel and have achieved promising results

in their specific tasks, there are several interesting research topics related to transparent, dynamic

objects and camouflaged animals. Potential future works include:

• Enhanced Transparent Object Detection and Tracking: Developing more robust algorithms

that can accurately detect and track transparent objects in real-time, even in complex and

cluttered environments.

• Multi-Modal Sensor Fusion: Investigating the integration of data from various sensors, such

as RGB cameras, depth sensors, and thermal cameras, to improve the accuracy and reliability

of transparent object detection and segmentation.
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• 3D Reconstruction of Transparent Objects: Creating innovative methods for reconstructing

transparent objects in 3D, which has applications in fields such as robotic manipulation in

various industrial and domestic settings.

• Dynamic Environment Adaptation: Extending the research to handle dynamic and changing

environments, ensuring the developed techniques remain effective in real-world scenarios

with moving objects and varying lighting conditions.

• Transfer Learning for Rare Object Detection: Exploring transfer learning techniques to

improve the detection and segmentation of rare or less frequently occurring camouflaged

animals to study and protect wildlife, particularly camouflaged animals in their natural habitats.

• Augmented Reality and Virtual Reality: Utilizing the advancements in transparent object

detection, tracking and reconstruction to enhance the realism and interactivity of augmented

reality (AR) and virtual reality (VR) experiences.

By addressing these future research directions, we can continue to push the boundaries of what is

possible in computer vision and graphics, ultimately leading to more intelligent and capable systems.
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“Marine Video Kit: A new marine video dataset for content-based analysis and retrieval,” in

MultiMedia Modeling - 29th International Conference, MMM 2023. Springer, 2023. 7, 111

[268] V. Tuan-Anh, N. Duc-Thanh, H. Binh-Son, P. Quang-Hieu, and Y. Sai-Kit, “Rfnet-4d: Joint

object reconstruction and flow estimation from 4d point clouds,” in ECCV, 2022. 6, 37, 43,

44, 45, 46, 47, 50, 51

[269] V. Tuan-Anh, N. Duc-Thanh, H. Binh-Son, P. Quang-Hieu, and Y. Sai-Kit, “Rfnet-4d++:

Joint object reconstruction and flow estimation from 4d point clouds with cross-attention

148



spatio-temporal features,” in PREPRINT available at Research Square, DOI: 10.21203/rs.3.rs-

4390361/v1, 2024. 6

[270] V. Tuan-Anh, N. Duc-Thanh, C. Nhat Minh, G. Qing, H. Binh-Son, T. Ivor W., and Y. Sai-

Kit, “Leveraging open-vocabulary diffusion to camouflaged instance segmentation,” in arXiv

preprint arXiv:2312.17505, 2024. 6

[271] V. Tuan-Anh, N.-T. Hai, Z. Ziqiang, H. Binh-Son, G. Qing, T. Ivor W., and Y. Sai-Kit,

“Transcues: Boundary and reflection-empowered pyramid vision transformer for semantic

transparent object segmentation,” in OpenReview preprint, 2024. [Online]. Available:

https://openreview.net/forum?id=e9bEoxNiTJ 6

[272] V. Tuan-Anh, S. Srinjay, Z. Zhiyuan, H. Binh-Son, and Y. Sai-Kit, “Test-time augmentation for

3d point cloud classification and segmentation,” in Proceedings of International Conference

on 3D Vision (3DV), 2024. 6

[273] V. Tuan-Anh, Z. Ziqiang, S. Chengyang, G. Qing, T. Ivor W., and Y. Sai-Kit, “Camovid60k:

A large-scale video dataset for moving camouflaged animals understanding,” in Preprint,

2024. 6

[274] H.-Y. Tung, H.-W. Tung, E. Yumer, and K. Fragkiadaki, “Self-supervised learning of motion

capture,” in NeurIPS, 2017. 30

[275] M. A. Uy, Q.-H. Pham, B.-S. Hua, D. T. Nguyen, and S.-K. Yeung, “Revisiting point cloud

classification: A new benchmark dataset and classification model on real-world data,” in

ICCV, 2019. 10, 13, 19, 20

[276] A. Valada, R. Mohan, and W. Burgard, “Self-supervised model adaptation for multimodal

semantic segmentation,” International Journal of Computer Vision (IJCV), 2019. 78

[277] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. u. Kaiser, and

I. Polosukhin, “Attention is all you need,” in NeurIPS, vol. 30, 2017. 67

[278] T.-A. Vu, D. T. Nguyen, Q. Guo, B.-S. Hua, N. M. Chung, I. W. Tsang, and S.-K. Yeung,

“Leveraging open-vocabulary diffusion to camouflaged instance segmentation,” arXiv preprint

arXiv:2312.17505, 2023. 109

149

https://openreview.net/forum?id=e9bEoxNiTJ


[279] M. Wand, P. Jenke, Q. Huang, M. Bokeloh, L. Guibas, and A. Schilling, “Reconstruction of de-

forming geometry from time-varying point clouds,” in Proceedings of the Fifth Eurographics

Symposium on Geometry Processing, 2007. 30

[280] G. Wang, W. Li, M. Aertsen, J. Deprest, S. Ourselin, and T. Vercauteren, “Aleatoric uncertainty

estimation with test-time augmentation for medical image segmentation with convolutional

neural networks,” Neurocomputing, vol. 338, pp. 34–45, 2019. 13

[281] H. Wang, Y. Zhu, H. Adam, A. Yuille, and L.-C. Chen, “MaX-DeepLab: End-to-End panoptic

segmentation with mask transformers,” in CVPR, 2021. 58

[282] J. Wang, C. Wen, Y. Fu, H. Lin, T. Zou, X. Xue, and Y. Zhang, “Neural pose transfer by

spatially adaptive instance normalization,” in CVPR, 2020. 34

[283] J. Wang, K. Sun, T. Cheng, B. Jiang, C. Deng, Y. Zhao, D. Liu, Y. Mu, M. Tan, X. Wang,

W. Liu, and B. Xiao, “Deep high-resolution representation learning for visual recognition,”

TPAMI, 2020. 74

[284] N. Wang, Y. Zhang, Z. Li, Y. Fu, W. Liu, and Y.-G. Jiang, “Pixel2Mesh: Generating 3D mesh

models from single rgb images,” in ECCV, 2018. 33

[285] P.-S. Wang, Y. Liu, Y.-X. Guo, C.-Y. Sun, and X. Tong, “O-CNN: Octree-based convolutional

neural networks for 3d shape analysis,” ACM Trans. Graph., 2017. 33

[286] Q. Wang, Y.-Y. Chang, R. Cai, Z. Li, B. Hariharan, A. Holynski, and N. Snavely, “Tracking

everything everywhere all at once,” in ICCV, 2023. 115

[287] S. Wang, S. Suo, W.-C. Ma, A. Pokrovsky, and R. Urtasun, “Deep parametric continuous

convolutional neural networks,” in CVPR, 2018, pp. 2589–2597. 10

[288] W. Wang, J. Dai, Z. Chen, Z. Huang, Z. Li, X. Zhu, X. Hu, T. Lu, L. Lu, H. Li, X. Wang,

and Y. Qiao, “Internimage: Exploring large-scale vision foundation models with deformable

convolutions,” in CVPR, 2023. 59, 78

[289] W. Wang, E. Xie, X. Li, D.-P. Fan, K. Song, D. Liang, T. Lu, P. Luo, and L. Shao, “Pyramid

vision transformer: A versatile backbone for dense prediction without convolutions,” in ICCV,

2021. 57, 59, 60, 67, 77, 80, 86

150



[290] W. Wang, E. Xie, X. Li, D.-P. Fan, K. Song, D. Liang, T. Lu, P. Luo, and L. Shao, “Pvtv2:

Improved baselines with pyramid vision transformer,” Computational Visual Media, vol. 8,

no. 3, pp. 1–10, 2022. 60, 67, 68, 78, 79, 80

[291] X. Wang, R. Zhang, T. Kong, L. Li, and C. Shen, “Solov2: Dynamic and fast instance

segmentation,” Advances in Neural Information Processing Systems, vol. 33, pp. 17 721–

17 732, 2020. 103

[292] Y. Wang, Q. Zhou, J. Liu, J. Xiong, G. Gao, X. Wu, and L. J. Latecki, “LEDNet: A lightweight

encoder-decoder network for real-time semantic segmentation,” in ICIP, 2019. 74

[293] Y. Wang, Y. Sun, Z. Liu, S. E. Sarma, M. M. Bronstein, and J. M. Solomon, “Dynamic graph

cnn for learning on point clouds,” ACM Transactions on Graphics, 2019. 10, 17, 21

[294] Y. Wang, Y. Sun, Z. Liu, S. E. Sarma, M. M. Bronstein, and J. M. Solomon, “Dynamic graph

cnn for learning on point clouds,” ACM TOG, 2019. 17, 19, 21, 22, 24

[295] Z. Wang and F. Lu, “Voxsegnet: Volumetric cnns for semantic part segmentation of 3d shapes,”

IEEE TVCG, 2019. 10

[296] J. Wei, S. Wang, Z. Wu, C. Su, Q. Huang, and Q. Tian, “Label decoupling framework for

salient object detection,” in CVPR, 2020. 73, 75

[297] C. Wen, Y. Zhang, Z. Li, and Y. Fu, “Pixel2Mesh++: Multi-view 3D mesh generation via

deformation,” in ICCV, 2019. 33

[298] Z. Wenbo, L. Xianming, Z. Zhiwei, J. Junjun, G. Wei, L. Ge, and J. Xiangyang, “Self-

supervised arbitrary-scale point clouds upsampling via implicit neural representation,” in

CVPR, 2022. 9, 16, 17, 19, 20, 23, 25

[299] J. Wu, C. Zhang, T. Xue, W. T. Freeman, and J. B. Tenenbaum, “Learning a probabilistic

latent space of object shapes via 3d generative-adversarial modeling,” in NeurIPS, 2016. 11

[300] J. Wu, X. Li, S. Xu, H. Yuan, H. Ding, Y. Yang, X. Li, J. Zhang, Y. Tong, X. Jiang, B. Ghanem,

and D. Tao, “Towards open vocabulary learning: A survey,” arXiv preprint arXiv:2306.15880,

pp. 1–22, 2023. 92

151



[301] Y. Wu, A. Kirillov, F. Massa, W.-Y. Lo, and R. Girshick, “Detectron2,” https://github.com/

facebookresearch/detectron2, 2019. 101

[302] Z. Wu, L. Su, and Q. Huang, “Cascaded partial decoder for fast and accurate salient object

detection,” in CVPR, 2019. 73, 75

[303] Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang, and J. Xiao, “3d shapenets: A deep

representation for volumetric shapes,” in CVPR, 2015, pp. 1912–1920. 10, 11, 19, 20, 26

[304] K. Xiang, K. Yang, and K. Wang, “Polarization-driven semantic segmentation via efficient

attention-bridged fusion,” Optica Express, 2021. 56, 58, 70, 71

[305] C. Xie, Y. Xiang, Z. Harchaoui, and D. Fox, “Object discovery in videos as foreground motion

clustering,” in CVPR, 2019. 112

[306] E. Xie, W. Wang, Z. Yu, A. Anandkumar, J. M. Álvarez, and P. Luo, “Segformer: Simple and

efficient design for semantic segmentation with transformers,” in NeurIPS, 2021. 56, 59, 70,

71, 72

[307] E. Xie, W. Wang, W. Wang, M. Ding, C. Shen, and P. Luo, “Segmenting transparent objects

in the wild,” in ECCV, 2020. 55, 59, 62, 70, 71, 74, 78

[308] E. Xie, W. Wang, W. Wang, P. Sun, H. Xu, D. Liang, and P. Luo, “Segmenting transparent

object in the wild with transformer,” in IJCAI, 2021. 55, 56, 57, 58, 65, 66, 70, 71, 73, 74, 77,

80, 81, 83

[309] E. Xie, W. Wang, W. Wang, P. Sun, H. Xu, D. Liang, and P. Luo, “Segmenting transparent

objects in the wild with transformer,” in Proceedings of the International Joint Conferences

on Artificial Intelligence, 2021, pp. 1194–1200. 90

[310] J. Xie, W. Xie, and A. Zisserman, “Segmenting moving objects via an object-centric layered

representation,” NeurIPS, 2022. 109, 112

[311] Z. Xie, K. Xu, W. Shan, L. Liu, Y. Xiong, and H. Huang, “Projective feature learning for 3d

shapes with multi-view depth images,” Computer Graphics Forum, vol. 34, no. 7, pp. 1–11,

2015. 10

152

https://github.com/facebookresearch/detectron2
https://github.com/facebookresearch/detectron2


[312] C. Xu, B. Wu, Z. Wang, W. Zhan, P. Vajda, K. Keutzer, and M. Tomizuka, “Squeezesegv3:

Spatially-adaptive convolution for efficient point-cloud segmentation,” in ECCV, 2020, pp.

1–19. 10

[313] J. Xu, S. Liu, A. Vahdat, W. Byeon, X. Wang, and S. D. Mello, “Open-vocabulary panoptic

segmentation with text-to-image diffusion models,” in Proceedings of the IEEE/CVF Confer-

ence on Computer Vision and Pattern Recognition, 2023, pp. 2955–2966. 87, 88, 89, 91, 92,

93, 98, 100, 102, 103, 106

[314] X. Xu, T. Xiong, Z. Ding, and Z. Tu, “Masqclip for open-vocabulary universal image

segmentation,” in Proceedings of the IEEE/CVF International Conference on Computer

Vision (ICCV), October 2023, pp. 887–898. 88, 93, 102, 103

[315] Y. Xu, T. Fan, M. Xu, L. Zeng, and Y. Qiao, “Spidercnn: Deep learning on point sets with

parameterized convolutional filters,” in ECCV, 2018, pp. 87–102. 10

[316] J. Yan, T. Le, K. Nguyen, M. Tran, T. Do, and T. V. Nguyen, “Mirrornet: Bio-inspired

camouflaged object segmentation,” IEEE Access, vol. 9, pp. 43 290–43 300, 2021. 87

[317] C. Yang, H. Lamdouar, E. Lu, A. Zisserman, and W. Xie, “Self-supervised video object

segmentation by motion grouping,” in ICCV, 2021. 110, 112, 119, 120

[318] G. Yang, X. Huang, Z. Hao, M.-Y. Liu, S. Belongie, and B. Hariharan, “Pointflow: 3d point

cloud generation with continuous normalizing flows,” in ICCV, 2019, pp. 4541–4550. 11

[319] J. Yang, U. Wickramasinghe, B. Ni, and P. Fua, “Implicitatlas: Learning deformable shape

templates in medical imaging,” in CVPR, 2022, pp. 15 861–15 871. 35

[320] J. Yang, C. Li, X. Dai, and J. Gao, “Focal modulation networks,” in NeurIPS, 2022. 80

[321] J. Yang, C. Li, P. Zhang, B. Xiao, C. Liu, L. Yuan, and J. Gao, “Unified contrastive learning

in image-text-label space,” in Proceedings of the IEEE/CVF Conference on Computer Vision

and Pattern Recognition, 2022, pp. 19 163–19 173. 120, 121

[322] K. Yang, J. Zhang, S. Reiß, X. Hu, and R. Stiefelhagen, “Capturing omni-range context for

omnidirectional segmentation,” in CVPR, 2021. 57, 59

153



[323] M. Yang, K. Yu, C. Zhang, Z. Li, and K. Yang, “DenseASPP for semantic segmentation in

street scenes,” in CVPR, 2018. 56, 74

[324] X. Yang, H. Mei, K. Xu, X. Wei, B. Yin, and R. W. Lau, “Where is my mirror?” in ICCV,

2019. 59, 63, 65, 66, 73, 75

[325] C. Yingshu, V. Tuan-Anh, S. Ka-Chun, H. Binh-Son, and Y. Sai-Kit, “Time-of-day neural style

transfer for architectural photographs,” in IEEE International Conference on Computational

Photography, ICCP 2022. IEEE, 2022. 7

[326] C. Yu, J. Wang, C. Peng, C. Gao, G. Yu, and N. Sang, “BiSeNet: Bilateral segmentation

network for real-time semantic segmentation,” in ECCV, 2018. 74

[327] F. Yu and V. Koltun, “Multi-scale context aggregation by dilated convolutions,” in ICLR,

2016. 63

[328] L. Yu, X. Li, C. Fu, D. Cohen-Or, and P. Heng, “Ec-net: an edge-aware point set consolidation

network,” CoRR, vol. abs/1807.06010, 2018. 12

[329] L. Yu, X. Li, C.-W. Fu, D. Cohen-Or, and P.-A. Heng, “Pu-net: Point cloud upsampling

network,” in CVPR, 2018, pp. 2790–2799. 9, 12

[330] L. Yuan, Y. Chen, T. Wang, W. Yu, Y. Shi, Z.-H. Jiang, F. E. Tay, J. Feng, and S. Yan,

“Tokens-to-token vit: Training vision transformers from scratch on imagenet,” in ICCV, 2021.

72

[331] Y. Yuan, L. Huang, J. Guo, C. Zhang, X. Chen, and J. Wang, “OCNet: Object context for

semantic segmentation,” International Journal of Computer Vision, 2021. 56, 74, 78, 80

[332] Y. Zang, W. Li, K. Zhou, C. Huang, and C. C. Loy, “Open-vocabulary detr with conditional

matching,” in Proceedings of the European Conference on Computer Vision, 2022, pp.

106–122. 87, 92

[333] A. Zareian, K. D. Rosa, D. H. Hu, and S. Chang, “Open-vocabulary object detection using

captions,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, 2021, pp. 14 393–14 402. 92

154



[334] F. Zhang, J. Fang, B. W. Wah, and P. H. Torr, “Deep fusionnet for point cloud semantic

segmentation.” in ECCV, 2020, pp. 644–663. 11

[335] H. Zhang, F. Li, S. Liu, L. Zhang, H. Su, J. Zhu, L. Ni, and H.-Y. Shum, “DINO: DETR

with improved denoising anchor boxes for end-to-end object detection,” in The Eleventh

International Conference on Learning Representations, 2023. 119, 120, 121

[336] H. Zhang, F. Li, X. Zou, S. Liu, C. Li, J. Yang, and L. Zhang, “A simple framework for

open-vocabulary segmentation and detection,” in Proceedings of the IEEE/CVF International

Conference on Computer Vision, October 2023, pp. 1020–1031. 88, 93, 102, 103, 105, 106

[337] J. Zhang, K. Yang, A. Constantinescu, K. Peng, K. Müller, and R. Stiefelhagen, “Trans4trans:

Efficient transformer for transparent object and semantic scene segmentation in real-world

navigation assistance,” IEEE T-ITS, 2022. 55, 56, 58, 60, 74, 77, 78, 80

[338] J. Zhang, J. Huang, S. Jin, and S. Lu, “Vision-language models for vision tasks: A survey,”

arXiv preprint arXiv:2304.00685, pp. 1–23, 2023. 92

[339] X. Zhang, R. Ng, and Q. Chen, “Single image reflection separation with perceptual losses,”

in CVPR, 2018. 64

[340] Y. Zhang, H. Jiang, Y. Miura, C. D. Manning, and C. P. Langlotz, “Contrastive learning

of medical visual representations from paired images and text,” Proceedings of Machine

Learning Research, vol. 182, pp. 1–24, 2022. 94

[341] Z. Zhang, B.-S. Hua, and S.-K. Yeung, “Shellnet: Efficient point cloud convolutional neural

networks using concentric shells statistics,” in ICCV, 2019, pp. 1607–1616. 10

[342] H. Zhao, L. Jiang, J. Jia, P. H. Torr, and V. Koltun, “Point transformer,” in ICCV, 2021. 19

[343] H. Zhao, X. Qi, X. Shen, J. Shi, and J. Jia, “ICNet for real-time semantic segmentation on

high-resolution images,” in ECCV, 2018. 74

[344] H. Zhao, J. Shi, X. Qi, X. Wang, and J. Jia, “Pyramid scene parsing network,” in CVPR, 2017.

71, 72, 74, 78

[345] H. Zhao, Y. Zhang, S. Liu, J. Shi, C. C. Loy, D. Lin, and J. Jia, “PSANet: Point-wise spatial

attention network for scene parsing,” in ECCV, 2018. 71, 72

155



[346] W. Zhao, Y. Rao, Z. Liu, B. Liu, J. Zhou, and J. Lu, “Unleashing text-to-image diffusion

models for visual perception,” in Proceedings of the IEEE/CVF International Conference on

Computer Vision, 2023, pp. 5729–5739. 89, 100, 102

[347] Q. Zheng, X. Fan, M. Gong, A. Sharf, O. Deussen, and H. Huang, “4D reconstruction of

blooming flowers,” Computer Graphics Forum, 2017. 30

[348] S. Zheng, J. Lu, H. Zhao, X. Zhu, Z. Luo, Y. Wang, Y. Fu, J. Feng, T. Xiang, P. H. S. Torr,

and L. Zhang, “Rethinking semantic segmentation from a sequence-to-sequence perspective

with transformers,” in CVPR, 2021. 56, 57, 58, 70, 71, 72

[349] Y. Zheng, J. Wu, Y. Qin, F. Zhang, and L. Cui, “Zero-shot instance segmentation,” in

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,

2021, pp. 2593–2602. 100, 102

[350] Z. Zheng, T. Yu, Q. Dai, and Y. Liu, “Deep implicit templates for 3d shape representation,” in

CVPR, June 2021, pp. 1429–1439. 35

[351] Z. Zheng, Y. Chen, H. Zeng, T.-A. Vu, B.-S. Hua, and S.-K. Yeung, “Marineinst: A foundation

model for marine image analysis with instance visual description,” in Proceedings of the

European Conference on Computer Vision, 2024. 7

[352] Z. Zheng, Y. Xie, H. Liang, Z. Yu, and S.-K. Yeung, “CoralVOS: Dataset and benchmark for

coral video segmentation,” arXiv preprint arXiv:2310.01946, 2023. 113

[353] Z. Zheng, J. Zhang, T.-A. Vu, S. Diao, Y. H. W. Tim, and S.-K. Yeung, “MarineGPT:

Unlocking secrets of ocean to the public,” arXiv preprint arXiv:2310.13596, 2023. 7, 115

[354] Y. Zhong, J. Yang, P. Zhang, C. Li, N. Codella, L. H. Li, L. Zhou, X. Dai, L. Yuan, Y. Li,

and J. Gao, “Regionclip: Region-based language-image pretraining,” in Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022, pp. 16 772–16 782.

92

[355] B. Zhou, H. Zhao, X. Puig, S. Fidler, A. Barriuso, and A. Torralba, “Scene parsing through

ade20k dataset,” in Proceedings of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition, 2017, pp. 5122–5130. 101

156



[356] B. Zhou, H. Zhao, X. Puig, S. Fidler, A. Barriuso, and A. Torralba, “Scene parsing through

ade20k dataset,” in IEEE/CVF conference on Computer Vision and Pattern Recognition

(CVPR), 2017, pp. 633–641. 109

[357] B. Zhou, H. Zhao, X. Puig, T. Xiao, S. Fidler, A. Barriuso, and A. Torralba, “Semantic

understanding of scenes through the ade20k dataset,” International Journal of Computer

Vision, vol. 127, no. 3, pp. 302–321, 2019. 101, 105

[358] W. Zhou, E. Yang, J. Lei, and L. Yu, “Frnet: Feature reconstruction network for rgb-d indoor

scene parsing,” IEEE Journal of Selected Topics in Signal Processing, 2022. 78

[359] X. Zhou, R. Girdhar, A. Joulin, P. Krähenbühl, and I. Misra, “Detecting twenty-thousand

classes using image-level supervision,” in Proceedings of the European Conference on

Computer Vision, 2022, pp. 350–368. 92

[360] Z. Zhu, M. Xu, S. Bai, T. Huang, and X. Bai, “Asymmetric non-local neural networks for

semantic segmentation,” in ICCV, 2019. 78

[361] Z. Ziqiang, C. Yiwei, Z. Jipeng, V. Tuan-Anh, Z. Huimin, T. Yue W., and Y. Sai-Kit, “Ex-

ploring boundary of gpt-4v on marine analysis: A preliminary case study,” in arXiv preprint

arXiv:2401.02147, 2024. 7

[362] X. Zou, Z.-Y. Dou, J. Yang, Z. Gan, L. Li, C. Li, X. Dai, H. Behl, J. Wang, L. Yuan, N. Peng,

L. Wang, Y. J. Lee, and J. Gao, “Generalized decoding for pixel, image, and language,” in

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, June

2023, pp. 15 116–15 127. 88, 93, 102, 103, 106

[363] X. Zou, J. Yang, H. Zhang, F. Li, L. Li, J. Wang, L. Wang, J. Gao, and Y. J. Lee, “Segment

everything everywhere all at once,” in Thirty-seventh Conference on Neural Information

Processing Systems, 2023. 88, 93, 102, 103

[364] Ö. Çiçek, A. Abdulkadir, S. Lienkamp, T. Brox, and O. Ronneberger, “3d u-net: Learning

dense volumetric segmentation from sparse annotation,” Medical Image Computing and

Computer-Assisted Intervention (MICCAI), 2016. 15

157


	Title Page
	Authorization Page
	Signature Page
	Acknowledgments
	Table of Contents
	Abstract
	Chapter 1 Introduction
	Chapter 2 Robust Inference using Test Time Augmentation
	Introduction
	Related Works
	3D Deep Learning
	Neural 3D Reconstruction
	Point Cloud Upsampling.
	Data Augmentation and Test-Time Augmentation

	Our Method
	Overview
	Augmentation by Implicit Field Reconstruction
	Augmentation by Point Cloud Upsampling
	Downstream Tasks.

	Experimental Results
	Implementation Details
	Classification Results
	Segmentation Results
	Additional Analysis

	Discussion and Conclusions

	Chapter 3 4D Dynamic Point Clouds Flow Estimation and Shape Reconstruction
	Introduction
	Related Work
	3D Reconstruction
	4D Reconstruction
	Motion Transfer
	Shape Correspondence Modelling

	Our Method
	Overview
	Compositional Encoder
	Joint Decoder
	Joint Learning

	Experiments
	Experimental Setup
	Results
	Ablation Studies
	Complexity Analysis

	Discussion and Conclusion

	Chapter 4 Transparent and Reflective Object Segmentation
	Introduction
	Related Works
	Transparent Object Sensing and Segmentation
	Mirror Segmentation
	Transformer in Semantic Segmentation

	Our Proposed Method
	Preliminary
	TransCues: Revealing Transparency via Edge and Reflection
	Boundary Feature Enhancement Module
	Reflection Feature Enhancement Module
	Loss Functions

	Experiments
	Datasets
	Implementation Details
	Evaluation metrics.
	Qualitative and Quantitative Results
	Ablation studies
	Further Analysis and Discussions

	Conclusions

	Chapter 5 Open-Vocabulary Camouflaged Instance Segmentation
	Introduction
	Related Works
	Camouflaged Object Understanding
	Text-to-image Diffusion
	Generative Models for Segmentation
	Open-vocabulary Detection and Segmentation

	Proposed Method
	Preliminaries
	Our Pipeline
	Camouflaged Object Representation Learning
	Camouflaged Instance Normalisation (CIN)
	Training

	Experiments
	Datasets
	Implementation Details
	Results
	Ablation Studies

	Conclusion

	Chapter 6 Video Dataset for Camouflage Animal Understanding
	Introduction
	Related Works
	Camouflaged Scene Understanding
	Video Camouflaged Object Detection and Segmentation

	CamoVid60K Dataset
	Data Construction and Processing
	Dataset Specifications and Statistics

	A simple pipeline to discern camouflaged animals
	Experiments
	Baselines
	Benchmarks and Discussions

	Conclusion

	Chapter 7 Conclusion and Future Works
	References

