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Motivation and Problem

e Architectural photography style transfer is a

— ~ ~“Spatial Luminance KL Loss™ ~ i DRIT++ MUNIT FUNIT DSMAP StarGANv2| AdaIN SANet AdaAttN LST | Ours
. : . : |
challenge dL!e to its special composition of dynamic | ! e-SSIMT | 05214 05653 04959 04790 04778 | 0.4962 0.4854 0.5194 0.4903 |0.6359
sky and static foreground. y Acct 0.8903 0.8678 0.77.14 09106  0.8788 | 0.7352 0.6193 0.6443 0.7071 |0.9486
, , , ISt 26160 25916 25903 2.6580  2.6088 |2.4082 21062 2.0928 1.7299 |2.7290
* Generic neural style transfer and image-to-image ing ToUt 0.6915 07382 0.5473 04975 04100 |0.6642 0.7183 0.6532 0.6264 |0.7257
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without knowing the foreground and background,
leading to mismatched chrominance and destroyed
geometric features of the original architecture.

Comparison to image-to-image translation methods
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Blending

Segmentation Optimization

Output

* Given an architectural photo and style reference,
we transfer styles of background and foreground
separately keeping foreground geometry intact.

Translated
background / foreground

Architectural style transfer framework with three main modules: segmentation, image
translation and blending optimization.

Style references

Blending Module
restore gradient detail

Style constraint

High-frequency geometry loss:

New background

correct semantic style * Gradient |OSSZ

content & style mismatched color &

Alpha blended

gradient
destroyed geometry [1] (Ours) T . ———— :
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style transfer:
architectural

1) A new problem setting for
photorealistic style transfer for
photographs of different times of day.
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2) A two-branch image-to-image translation neural Ablation StUdy 3

network with disentanglement representation that :

separately considers style transfer for image >
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3) A new dataset of architectural photographs and oUT - - - :
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an extensive benchmark for architectural style

Ablation study of segmentation
transfer.

Ablation study of geometry loss



