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• Architectural photography style transfer is a
challenge due to its special composition of dynamic
sky and static foreground.

• Generic neural style transfer and image-to-image
translation treat the image as a single entity
without knowing the foreground and background,
leading to mismatched chrominance and destroyed
geometric features of the original architecture.

• Given an architectural photo and style reference,
we transfer styles of background and foreground
separately keeping foreground geometry intact.

Motivation and Problem

1) A new problem setting for style transfer:
photorealistic style transfer for architectural
photographs of different times of day.

2) A two-branch image-to-image translation neural
network with disentanglement representation that
separately considers style transfer for image
foreground and background respectively,
accompanied with simple but effective geometry
losses designed for image content preservation.

3) A new dataset of architectural photographs and
an extensive benchmark for architectural style
transfer.

Contributions

content & style mismatched color &
destroyed geometry [1]

correct semantic style
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Results

High-frequency geometry loss:

• Gradient loss:
ℒ𝑔𝑑 = 𝔼𝑥1,𝑥2[ ∇(𝑌 𝑥1→2 − ∇(𝑌(𝑥1) 1]

• Spatial luminance KL loss:
ℒ𝑘𝑙 = 𝔼𝑥1,𝑥2[𝐾𝐿(𝑌 𝑥1→2 ฮ𝑌(𝑥1))]

*𝑌(∙) is luminance channel.

Blending Module
restore gradient detail

Architectural style transfer framework with three main modules: segmentation, image
translation and blending optimization.
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Comparison to neural style transfer methods
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Comparison to image-to-image translation methods

Ablation Study

Ablation study of geometry lossAblation study of segmentation

Image Gradient Loss
Spatial Luminance KL Loss
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[1] X. Huang and S. Belongie, “Arbitrary style transfer in real-time with adaptive instance normalization” ICCV 2017.
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